Effect of short annealing times on the magnetoelectronic properties of Co/Pd-based pseudo-spin-valves.

J Nanosci Nanotechnol

Data Storage Institute, (A*STAR) Agency for Science, Technology and Research, 5, Engineering Drive 1, Singapore 117608, Singapore.

Published: March 2011

We investigated the effects of short annealing times on the magnetoelectronic properties of pseudo-spin-valves (PSV) with perpendicular magnetic anisotropy based on Co/Pd multilayers using a contact hot plate. In order to study the time scale at which the degradation of film properties occurs for possible application in perpendicular MgO-based magnetic tunnel junctions (MTJ), the results were compared against our previous study of Co/Pd PSV based on vacuum annealing. With contact annealing for up to 90 s, no significant changes to the current-in-plane giant magnetoresistance (CIP-GMR), interlayer coupling, sheet resistance and layer coercivities were observed for up to 200 degrees C. At 350 degrees C, a 39 to 46% decrease in CIP-GMR was observed for annealing times of 30 to 90 s, respectively, slightly lower than that observed for vacuum annealing at 230 degrees C for 1 h. Similar results were also obtained for interlayer coupling, sheet resistance and layer coercivities, indicating that short annealing times allow for reduced interlayer diffusion at higher temperatures. However, it is clear that significant degradation of GMR performance occurs at 350 degrees C and above even for annealing times as short as 30 s, indicating the potential difficulty of realizing Co/Pd-based perpendicular MgO-MTJ.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.2733DOI Listing

Publication Analysis

Top Keywords

annealing times
20
short annealing
12
times magnetoelectronic
8
magnetoelectronic properties
8
vacuum annealing
8
interlayer coupling
8
coupling sheet
8
sheet resistance
8
resistance layer
8
layer coercivities
8

Similar Publications

Investigation of electrochromic performances of multicolor VO devices fabricated at low processing temperature.

Sci Rep

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.

In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.

View Article and Find Full Text PDF

Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.

The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.

View Article and Find Full Text PDF

Strawberry viruses are significant pathogenic agents in strawberry. The development and application of efficient virus detection technology can effectively reduce the economic losses incurred by virus diseases for strawberry cultivators. In order to rapidly identify strawberry virus species and prevent the spread of virus disease, a multiplex reverse transcription polymerase chain reaction system was established for the simultaneous detection and identification of strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry mottle virus (SMoV), strawberry polerovirus 1 (SPV-1), strawberry pallidosis-associated virus (SPaV), and strawberry crinivirus 4 (SCrV-4).

View Article and Find Full Text PDF

The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.

View Article and Find Full Text PDF

Porcine astrovirus (PoAstV), porcine sapovirus (PoSaV), porcine norovirus (PoNoV), and porcine rotavirus A (PoRVA) are newly discovered important porcine diarrhea viruses with a wide range of hosts and zoonotic potential, and their co-infections are often found in pig herds. In this study, the specific primers and probes were designed targeting the ORF1 gene of PoAstV, PoSaV, and PoNoV, and the VP6 gene of PoRVA. The recombinant standard plasmids were constructed, the reaction conditions (concentration of primers and probes, annealing temperature, and reaction cycle) were optimized, and the specificity, sensitivity, and reproducibility were analyzed to establish a quadruplex real-time quantitative RT-PCR (RT-qPCR) assay for the detection of these four diarrheal viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!