The cambium cells of the periosteum are an important cell source for select tissue engineering/regenerative medicine applications due to their osteogenic and chondrogenic potential. However, the cambium layer is only 2-5 cells thick, which complicates its harvest, and the low cell number limits its suitability for certain applications. Extracorporeal shock waves (ESWs) have been reported to cause periosteal osteogenesis following cambium layer thickening. This study quantified the proliferation of cambium cells in the femur and tibia of adult rats following ESW treatment at two different energy flux densities. Four days after application of ESWs, there was a significant (3- to 6-fold) increase in cambium layer thickness and cell number. Proliferation was seen with an energy flux density as low as 0.15 mJ/mm(2). The tibial cambium cells were more proliferative than those of the femur, with the cells closest to the ESW source proliferating the most. Within the thickened periosteum, α-smooth muscle actin and von Willebrand Factor expression were upregulated, suggesting a vascular role in ESW osteogenesis. Bone formation was seen within the stimulated periosteum at day 4. We propose that non-invasive ESWs can be used to rapidly stimulate cambium cell proliferation, providing a larger cell population for use as a progenitor cell source for tissue engineering applications, than can normally be provided by periosteum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.21346 | DOI Listing |
Plants (Basel)
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China.
All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of trees aged 50 to 350 years.
View Article and Find Full Text PDFPlant Physiol
December 2024
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
Tension wood (TW), characterized by increased cambium cell proliferation and few vessels, is a classical model for the mechanical analysis of wood formation. In this study, we found higher superoxide anion (O2.-) levels in the cambium zone of poplar (Populus alba × P.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Arable soil contamination with heavy metals (HMs) poses a great potential threat to vegetable crops and human health. Radish (Raphanus sativus L.), an economical and popular root vegetable crop, is easily absorbed HMs by its taproot.
View Article and Find Full Text PDFCurr Issues Mol Biol
October 2024
College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
Proc Natl Acad Sci U S A
December 2024
Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea.
Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!