Role of E-cadherin in the pathogenesis of gastroesophageal reflux disease.

Am J Gastroenterol

Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.

Published: June 2011

Objectives: An early event in the pathogenesis of gastroesophageal reflux disease (GERD) is an acid-induced increase in junctional (paracellular) permeability in esophageal epithelium (EE). The molecular events that account for this change are unknown. E-cadherin is a junctional protein important in barrier function in EE. Therefore, defects in barrier function in EE were sought in GERD as well as whether their presence correlated with abnormalities in e-cadherin.

Methods: Endoscopic biopsies of EE from GERD (n=20; male 10; female 10; mean age 50 ± 10 years) and subjects with a healthy esophagus (controls; n=23; male 11; female 12; mean age 51 ± 11 years) were evaluated in mini-Ussing chambers and by western blot and immunochemistry; and serum analyzed by enzyme-linked immunosorbent assay (ELISA). A role for e-cadherin was also assessed using a unique conditional knockout of e-cadherin in adult mouse esophagus.

Results: EE from GERD patients had lower electrical resistance and higher fluorescein flux than EE from controls; and the findings in GERD associated with cleavage of e-cadherin. Cleavage of e-cadherin in GERD was documented in EE by the presence of a 35-kDa, C-terminal fragment of the molecule on western blot and by an increase in soluble N-terminal fragments of the molecule in serum. Activation of the membrane metalloproteinase, A Disintegrin And Metalloproteinase (ADAM-10), was identified as a likely cause for cleavage of e-cadherin by western blot and immunostaining and a role for e-cadherin in the increased junctional permeability in EE from GERD supported by showing increased permeability after deletion of e-cadherin in mouse EE.

Conclusions: The EE in GERD has increased junctional permeability and this is in association with proteolytic cleavage of e-cadherin. As loss of e-cadherin can, alone, account for the increase in junctional permeability, cleavage of e-cadherin likely represents a critical molecular event in the pathogenesis of GERD, and identification of cleaved fragments may, if confirmed in larger studies, be valuable as a biomarker of GERD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568513PMC
http://dx.doi.org/10.1038/ajg.2011.102DOI Listing

Publication Analysis

Top Keywords

cleavage e-cadherin
20
role e-cadherin
12
western blot
12
junctional permeability
12
e-cadherin
11
gerd
10
pathogenesis gastroesophageal
8
gastroesophageal reflux
8
reflux disease
8
event pathogenesis
8

Similar Publications

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) represents an aggressive form of breast cancer with few available therapeutic options. Chemotherapy, particularly with drugs like doxorubicin (DOX), remains the cornerstone of treatment for this challenging subtype. However, the clinical utility of DOX is hampered by adverse effects that escalate with higher doses and drug resistance, underscoring the need for alternative therapies.

View Article and Find Full Text PDF

Renal fibrosis is the most important feature of the progression of chronic kidney disease (CKD), and epithelial-mesenchymal transition (EMT) plays an important role in renal fibrosis. Dedicator of cytokinesis protein 2 (Dock2) is involved in the immune system and the development of a variety of fibrotic diseases. However, its specific role in renal fibrosis remains unclear.

View Article and Find Full Text PDF

Laryngopharyngeal reflux disease (LPRD) is a prevalent upper airway disorder characterized by inflammation and epithelial damage due to the backflow of gastric contents. Current treatments, primarily proton pump inhibitors (PPIs), often show variable efficacy, necessitating the exploration of alternative or adjunctive therapies. This study investigates the therapeutic potential of a mixture of Hedera helix and Coptidis rhizome (HHCR) in mitigating the pathophysiological mechanisms of LPRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!