Cancer cells acquire resistance to DNA-damaging therapeutic agents, such as cisplatin, but the genetic mechanisms through which this occurs remain unclear. We show that the c-MYC oncoprotein increases cisplatin resistance by decreasing production of the c-MYC inhibitor BIN1 (bridging integrator 1). The sensitivity of cancer cells to cisplatin depended on BIN1 abundance, regardless of the p53 gene status. BIN1 bound to the automodification domain of and suppressed the catalytic activity of poly(ADP-ribose) polymerase 1 (PARP1, EC 2.4.2.30), an enzyme essential for DNA repair, thereby reducing the stability of the genome. The inhibition of PARP1 activity was sufficient for BIN1 to suppress c-MYC-mediated transactivation, the G(2)-M transition, and cisplatin resistance. Conversely, overexpressed c-MYC repressed BIN1 expression by blocking its activation by the MYC-interacting zinc finger transcription factor 1 (MIZ1) and thereby released PARP1 activity. Thus, a c-MYC-mediated positive feedback loop may contribute to cancer cell resistance to cisplatin.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.2001556DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
cisplatin resistance
12
polyadp-ribose polymerase
8
cells acquire
8
parp1 activity
8
bin1
6
cisplatin
6
resistance
5
c-myc
4
c-myc suppresses
4

Similar Publications

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Emerging Trends in Neuroblastoma Diagnosis, Therapeutics, and Research.

Mol Neurobiol

January 2025

Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.

This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!