Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082270PMC
http://dx.doi.org/10.1105/tpc.111.083345DOI Listing

Publication Analysis

Top Keywords

leaf senescence
8
signaling pathways
8
senescence complex
8
time points
8
senescence
7
leaf
5
high-resolution temporal
4
temporal profiling
4
profiling transcripts
4
transcripts arabidopsis
4

Similar Publications

Modified Atmosphere Packaging (MAP) is a conventional method used to prolong the shelf-life of fresh-cut vegetables, including lettuce. However, MAP-stored lettuce remains perishable, and its deterioration mechanism is not fully understood. Here, we utilized non-targeted LC-MS metabolomics to evaluate the effects of cutting and extended storage time on metabolite profiles of lettuce stored in MAP.

View Article and Find Full Text PDF

L-Cysteine Treatment Delays Leaf Senescence in Chinese Flowering Cabbage by Regulating ROS Metabolism and Stimulating Endogenous HS Production.

Foods

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.

View Article and Find Full Text PDF

DNA Methylation Is Crucial for 1-Methylcyclopropene Delaying Postharvest Ripening and Senescence of Tomato Fruit.

Int J Mol Sci

December 2024

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.

DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected.

View Article and Find Full Text PDF

Assessing Vegetation Canopy Growth Variations in Northeast China.

Plants (Basel)

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors.

View Article and Find Full Text PDF

Combined Impacts of Climate and Tree Physiology on Mercury Accumulation in Tropical and Subtropical Foliage and Robust Model Parametrization.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.

Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!