Antiangiogenesis enhances intratumoral drug retention.

Cancer Res

Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, USA.

Published: April 2011

The tumor vasculature delivers nutrients, oxygen, and therapeutic agents to tumor cells. Unfortunately, the delivery of anticancer drugs through tumor blood vessels is often inefficient and can constitute an important barrier for cancer treatment. This barrier can sometimes be circumvented by antiangiogenesis-induced normalization of tumor vasculature. However, such normalizing effects are transient; moreover, they are not always achieved, as shown here, when 9L gliosarcoma xenografts were treated over a range of doses with the VEGF receptor-selective tyrosine kinase inhibitors axitinib and AG-028262. The suppression of tumor blood perfusion by antiangiogenesis agents can be turned to therapeutic advantage, however, through their effects on tumor drug retention. In 9L tumors expressing the cyclophosphamide-activating enzyme P450 2B11, neoadjuvant axitinib treatment combined with intratumoral cyclophosphamide administration significantly increased tumor retention of cyclophosphamide and its active metabolite, 4-hydroxycyclophosphamide. Similar increases were achieved using other angiogenesis inhibitors, indicating that increased drug retention is a general response to antiangiogenesis. This approach can be extended to include systemic delivery of an anticancer prodrug that is activated intratumorally, where antiangiogenesis-enhanced retention of the therapeutic metabolite counterbalances the decrease in drug uptake from systemic circulation, as exemplified for cyclophosphamide. Importantly, the increase in intratumoral drug retention induced by neoadjuvant antiangiogenic drug treatment is shown to increase tumor cell killing and substantially enhance therapeutic activity in vivo. Thus, antiangiogenic agents can be used to increase tumor drug exposure and improve therapeutic activity following intratumoral drug administration, or following systemic drug administration in the case of a therapeutic agent that is activated intratumorally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070759PMC
http://dx.doi.org/10.1158/0008-5472.CAN-10-3242DOI Listing

Publication Analysis

Top Keywords

drug retention
16
intratumoral drug
12
drug
9
tumor
9
tumor vasculature
8
delivery anticancer
8
tumor blood
8
tumor drug
8
activated intratumorally
8
increase tumor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!