Background: Begomoviruses are single-stranded DNA viruses that cause economically important diseases of many crops throughout the world and induce symptoms in plants, including enations, leaf curling and stunting, that resemble developmental abnormalities. MicroRNAs (miRNAs) are small endogenous RNAs that are involved in a variety of activities, including plant development, signal transduction and protein degradation, as well as response to environmental stress, and pathogen invasion.

Results: The present study was aimed at understanding the deregulation of miRNAs upon begomovirus infection. Four distinct begomoviruses African cassava mosaic virus (ACMV), Cabbage leaf curl virus (CbLCuV), Tomato yellow leaf curl virus (TYLCV) and Cotton leaf curl Multan virus/Cotton leaf curl betasatellite (CLCuV/CLCuMB), were used in this study. Ten developmental miRNA were studied. N. benthamiana plants were inoculated with begomoviruses and their miRNA profiles were analysed by northern blotting using specific miRNA probes. The levels of most developmental miRNA were increased in N. benthamiana by TYLCV, CLCuMV/CLCuMB and CbLCuV infection with a common pattern despite their diverse genomic components. However, the increased levels of individual miRNAs differed for distinct begomoviruses, reflecting differences in severity of symptom phenotypes. Some of these miRNA were also common to ACMV infection.

Conclusions: Our results have shown a common pattern of miRNAs accumulation upon begomovirus infection. It was found that begomoviruses generally increase the accumulation of miRNA and thus result in the decreased translation of genes involved in the development of plants. Identification of common miRNAs that are deregulated upon begomovirus infection may provide novel targets for control strategies aimed at developing broad-spectrum resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072929PMC
http://dx.doi.org/10.1186/1743-422X-8-143DOI Listing

Publication Analysis

Top Keywords

leaf curl
16
begomovirus infection
12
distinct begomoviruses
8
curl virus
8
developmental mirna
8
common pattern
8
mirnas
6
begomoviruses
6
mirna
6
common
5

Similar Publications

A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement.

Plant Biotechnol J

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.

View Article and Find Full Text PDF

Disease complex associated with begomoviruses infecting squash and cucumber in Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

November 2024

Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.

During the field visits in growing season of 2022 in Dammam Region of Saudi Arabia, begomovirus-like symptoms including leaf curling, leaf cupping, leaf distortion, vein thickening and reduced leaf size were observed in squash and cucumber fields. Twenty-five samples were collected from each crop and PCR amplification was done using general diagnostic begomovirus primers (AC-1048/AV-494 and Begomo I/Begomo II). The obtained results showed desired sized amplified DNA fragments (550 bp and 1.

View Article and Find Full Text PDF

Genetic diversity and infectivity analysis of tomato yellow leaf curl virus Oman and its associated betasatellite.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.

Tomato yellow leaf curl virus-Oman (TYLCV-OM),  a variant of the Tomato yellow leaf curl virus-Iran (TYLCV-IR) strain, was identified in 2005 as the cause of tomato yellow leaf curl disease (TYLCD) in Oman and is  associated with a betasatellite namely as Tomato leaf curl betasatellite (ToLCB). Surveys were carried out from three diverse Governorates of Oman to investigate the correlation between the betasatellite and the virus. The visual assessment and scoring of infected tomato plants in the field revealed that the association of betasatellite with the disease was highest in Sharqia at 77%, followed by Dakhlia at41% and lowest in Batinah at30% .

View Article and Find Full Text PDF

Background: Tomato (Solanum lycopersicum L.) is a widely cultivated crop in tropical regions, but its production is often hampered by significant losses attributed to diseases like tomato leaf curl virus (ToLCV), fusarium wilt and root-knot nematode.

Methods And Results: This study employed an integrated approach utilizing both co-dominant and dominant SCAR markers, selected for specific resistance genes (ToLCV-Ty-1, Ty-2, Ty-2, Fusarium wilt (Race-2)-I-2, and Root-knot nematode-Mi-1.

View Article and Find Full Text PDF

Enhanced association of whitefly-begomovirus competence with plant-mediated mutualism.

Pest Manag Sci

December 2024

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.

Background: Vector-borne viruses often manipulate plant defenses against insect vectors, thereby impacting vector population dynamics and in turn virus spread. However, the factors regulating the outcome of insect vector-virus-plant tripartite interactions, such as the feature of virus-vector combinations, are understudied.

Results: Using eight whitefly (Bemisia tabaci)-begomovirus combinations exhibiting different degrees of competence, namely virus transmission efficiency, we examined the association between whitefly-begomovirus competence and plant-mediated mutualism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!