Panicle architecture is one of the most important agronomical traits that directly contribute to grain yield in rice (Oryza sativa L.). We report herein an in-depth characterization of two allelic larger panicle (lp) mutants that show significantly increased panicle size as well as improved plant architecture. Morphological analyses reveal that panicles of two mutants produced more inflorescence branches, especially the primary branches, and contained more grains. Moreover, mutant plants also display more lodging resistance than the wild type. The grain yield per plant in mutants is also increased, suggesting that mutant plants have useful potential for high grain yield in rice breeding. Map-based cloning reveals that LARGER PANICLE (LP) encodes a Kelch repeat-containing F-box protein. RNA in situ hybridization studies display that LP expression was enriched in the branch primordial region. Subcellular localization analyses demonstrate that LP is an endoplasmic reticulum (ER) localized protein, suggesting that LP might be involved in ER-associated protein degradation (ERAD). Using yeast two-hybrid assay and bimolecular fluorescence complementation analysis, we confirm that LP is an F-box protein and could interact with rice SKP1-like protein in an F-box domain-dependent manner. Quantitative real-time PCR results show that OsCKX2, which encodes cytokinin oxidase/dehydrogenase, is down-regulated evidently in mutants, implying that LP might be involved in modulating cytokinin level in plant tissues. These results suggest that LP plays an important role in regulating plant architecture, particularly in regulating panicle architecture, thereby representing promising targets for genetic improvement of grain production plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2011.00610.x | DOI Listing |
Sci Total Environ
March 2025
Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan. Electronic address:
Research on the effects of rice fertigation using treated municipal wastewater (TWW) as the sole source of nutrients and irrigation water remains limited. This study examined the impact of continuous TWW irrigation on rice-soil systems across three years (2021-2023), focusing on soil health, plant growth and yield, and the mineral and toxic element composition of rice grains. Forage rice cultivation using TWW fertigation (test field) was compared with conventional cultivation using chemical fertilisers and canal water (control field).
View Article and Find Full Text PDFJ Environ Manage
March 2025
College of Bioengineering, Sichuan University of Science & Engineering, Yibin, Sichuan, China. Electronic address:
Microbial oils are gaining attention as a promising raw material for biodiesel production. However, the high cost of microbial culture media and the elevated cold filter plugging point of the resulting biodiesel hinder their conversion. This study focused on fermenting SGs with added metal ions to regulate microbial oil saturation and enhance biodiesel quality.
View Article and Find Full Text PDFBiomacromolecules
March 2025
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States.
We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China.
The drought resistance of rice is an indirect observational and complex trait whose phenotype is reflected in the response of directly observational traits to drought stress. To objectively and accurately evaluate the drought resistance of rice, soil moisture gradient quantification was designed as a general water index among different soil types. Through soil water control, water consumption calculation, yield test, trait examination, and statistical analysis, the relationship between quantitative water control treatment and rice yield drought resistance was studied to establish a quantitative and controllable evaluation system of rice drought resistance.
View Article and Find Full Text PDFNat Plants
March 2025
Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, P. R. China.
The phenomenon of multiple-grain spikelets is frequently observed in gramineous crops. In the case of dual-floret spikelets, the upper fertile floret develops normally to form a single grain, while the lower sterile floret undergoes abortion. Here we elucidate the role of Double-Grain 1 (DG1), a gene encoding a homeobox-domain-containing protein, in regulating the lower floret meristem activity and double-grain spikelet trait in sorghum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!