A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. | LitMetric

Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations.

J Am Chem Soc

The Center for Insoluble Protein Structures (inSPIN), Department of Chemistry and the Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark.

Published: April 2011

A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)(2) and P(tBu)(3). Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [(13)C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all of them were labeled as their [(13)C]carbonyl counterparts in good to excellent yields based on limiting CO. Finally, palladium catalyzed decarbonylation at room temperature also allowed for a successful double carbonylation. This new protocol provides a facile and clean source of gaseous CO, which is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja200818wDOI Listing

Publication Analysis

Top Keywords

palladium catalyzed
20
situ generation
12
efficient incorporation
8
incorporation palladium
8
catalyzed aminocarbonylations
8
two-chamber system
8
catalyzed decarbonylation
8
chloride co-precursor
8
co-precursor provided
8
acid chloride
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!