Fabrication of gold nanoparticle modified ITO substrate to detect beta-amyloid using surface-enhanced Raman scattering.

J Nanosci Nanotechnol

Interdisciplinary program of Integrated Biotechnology, Sogang University, #1 Shinsu-Dong, Mapo-Gu, Seoul 121-742, Republic of Korea.

Published: January 2011

Alzheimer's disease is a progressive neurodegenerative disorder that is characterized by the deposition of beta-amyloid (Abeta) peptide and the formation of neurofibrillary tangles in neurons. The Abeta peptide is a key molecule in the pathogenesis of Alzheimer's disease and an important marker for early diagnosis. Surface-enhanced Raman scattering (SERS) has recently been attracting keen interest in various fields such as for biosensors or immunoassays. In this study, gold nanoparticles (Au NPs) were electrochemically deposited on an indium tin oxide (ITO) substrate at different heights. Abeta antibodies were immobilized on the Au-NP-coated ITO substrate, after which the interactions between the antigen and the antibody were determined via SERS spectroscopy. The SERS responses were strongest at the Au NP array height of 91 nm, with a good linear relationship that corresponded to the change in the concentration of the antigen. This Au-NP-array-mediated SERS can be applied with a highly sensitive immunodetection biosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.3268DOI Listing

Publication Analysis

Top Keywords

ito substrate
12
surface-enhanced raman
8
raman scattering
8
alzheimer's disease
8
abeta peptide
8
fabrication gold
4
gold nanoparticle
4
nanoparticle modified
4
modified ito
4
substrate detect
4

Similar Publications

Gibbons, a type of lesser ape, are brachiators but also walk bipedally and without forelimb assistance, not only on the ground but also on tree branches. The arboreal bipedal walking strategy of the gibbons has been studied in previous studies in relation to two-dimensional (2D) kinematic analysis. However, because tree branches and the ground differ greatly in width, leading to a constrained foot contact point on the tree branches, gibbons must adjust their 3D joint motions of trunk and hindlimb on the tree branches.

View Article and Find Full Text PDF

The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.

View Article and Find Full Text PDF

Tumor development often requires cellular adaptation to a unique, high metabolic state; however, the molecular mechanisms that drive such metabolic changes in TFE3-rearranged renal cell carcinoma (TFE3-RCC) remain poorly understood. TFE3-RCC, a rare subtype of RCC, is defined by the formation of chimeric proteins involving the transcription factor TFE3. In this study, we analyzed cell lines and genetically engineered mice, demonstrating that the expression of the chimeric protein PRCC-TFE3 induced a hypoxia-related signature by transcriptionally upregulating HIF1α and HIF2α.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.

View Article and Find Full Text PDF

Solution Casting Effect of PMMA-Based Polymer Electrolyte on the Performances of Solid-State Electrochromic Devices.

Polymers (Basel)

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.

Electrochromic devices (ECDs) are devices that change their optical properties in response to a low applied voltage. These devices typically consist of an electrochromic layer, a transparent conducting substrate, and an electrolyte. The advancement in solid-state ECDs has been driven by the need for improved durability, optical performance, and energy efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!