Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic passports.
Download full-text PDF |
Source |
---|
Plants (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
Flax is an important crop grown for seed and fiber. Flax chromosome number is 2n = 30, and its genome size is about 450-480 Mb. To date, the genomes of several flax varieties have been sequenced and assembled.
View Article and Find Full Text PDFBioprocess Biosyst Eng
December 2024
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
Lipases are one of the ubiquitous enzymes that belong to the hydrolases family and have a wide variety of applications. Cold-active lipases are of major attraction as they can act in lower temperatures and low water conditions because of their inherent greater flexibility. One of the novel applications of lipase is the enrichment of ω-3 polyunsaturated fatty acids (PUFA) in plant and fish oils.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
Salinity is an important abiotic environmental stressor threatening agricultural productivity worldwide. Flax, an economically important crop, exhibits varying degrees of adaptability to salt stress among different cultivars. However, the specific molecular mechanisms underlying these differences in adaptation have remained unclear.
View Article and Find Full Text PDFHeliyon
October 2024
Postgraduate Program in Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Av. Prof. Sen. Salgado Filho, 3000, Natal, Rio Grande do Norte, 59072-970, Brazil.
Over the past 10 years, materials science and engineering have shown increasing interest in incorporating lignocellulosic fibers into polymer and hybrid composites (LCF-CPH). This bibliometric analysis, covering the period 2012 to 2022, examines the current state of research on the application of these fibers in composites, with the aim of identifying significant contributions, new trends, and possible future directions. The analysis included a comprehensive database search using specific criteria, which revealed a significant increase in research activity on a variety of lignocellulosic fibers, such as flax, jute, hemp and sisal.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia.
Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!