The chaperone-like protein α-crystallin is a ∼35 subunit hetero-oligomer consisting of αA and αB subunits in a 3:1 molar ratio and has the function of maintaining eye lens transparency. We studied the thermal denaturation of α-crystallin by differential scanning calorimetry (DSC), circular dichroism (CD), and dynamic light scattering (DLS) as a function of pH. Our results show that between pH 7 and 10 the protein undergoes a reversible thermal transition. However, the thermodynamic parameters obtained by DSC are inconsistent with the complete denaturation of an oligomeric protein of the size of α-crystallin. Accordingly, the CD data suggest the presence of extensive residual secondary structure above the transition temperature. Within the pH range from 4 to 7 the increased aggregation propensity around the isoelectric point (pI ∼ 6) precludes observation of a thermal transition. As pH decreases below 4 the protein undergoes a substantial unfolding. The secondary structure content of the acid-denatured state shows little sensitivity to heating. We propose that the thermal transition above pH 7 and the acid-induced transition at ambient temperature result in predominant denaturation of the αB subunit. Although the extent of denaturation of the αA subunit cannot be estimated from the current data, the existence of a native-like conformation is suggested by the preserved association of the subunits and the chaperone-like activity. A key difference between the thermal and the acid denaturation is that the latter is accompanied by dissociation of αB subunits from the remaining αA-oligomer, as supported by DLS studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.22998 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, University of California, Berkeley, CA, USA.
The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico.
Metabolic syndrome (MS) has a high prevalence, with an estimated one-quarter of the world population affected by this pathological condition. Among the diseases of this syndrome are dysregulation of lipids, hypertension, and insulin resistance. Unfortunately, available drugs in the market used for treating MS, as almost 75% of all drugs, are highly insoluble, presenting a significant demand for strategies to increase their solubility.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
Magneto-ionics, which refers to the modification of the magnetic properties of materials through electric-field-induced ion migration, is emerging as one of the most promising methods to develop nonvolatile energy-efficient memory and spintronic and magnetoelectric devices. Herein, the controlled generation of ferromagnetism from paramagnetic Co-Ni oxide patterned microdisks (prepared upon thermal oxidation of metallic microdisks with dissimilar Co-Ni ratios, i.e.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.
We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.
View Article and Find Full Text PDFInorg Chem Front
December 2024
University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h are observed, while the tungsten analogues are basically inactive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!