Functional near-infrared optical topography (OT) is used to non-invasively measure the changes in oxygenated and deoxygenated haemoglobin (Δ[HbO2], Δ[HHb]) and hence investigate the brain haemodynamic changes, which occur in response to functional activation at specific regions of the cerebral cortex. However, when analysing functional OT data the task-related systemic changes should be taken into account.Here we used an independent component analysis (ICA) method on the OT [HbO2] signal, to determine the task-related independent components and then compared them with the systemic measurements (blood pressure, heart rate, scalp blood flow) to assess whether the components are due to systemic noise or neuronal activation. This analysis can therefore extract the true OT haemodynamic neuronal response and hence discriminate between regional activated cortical areas and global haemodynamic changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038015 | PMC |
http://dx.doi.org/10.1007/978-1-4419-7756-4_7 | DOI Listing |
This paper introduces an interferometer for single-shot areal quantitative phase imaging at two wavelengths simultaneously, suitable for use with low coherence sources. It operates in reflection geometry with on-axis illumination, so that it can be conveniently applied to surface texture measurements. The system consists of two identical 4f systems forming the reference and sample arm.
View Article and Find Full Text PDFCoherence scanning interferometry (CSI) is a non-destructive method for measuring the microstructure surface topography, but it fails to retrieve the bottom topography because the detection light is blocked by the sidewalls of the high aspect ratio (HAR) samples. Our team has proposed CSI technology with the detection light transparent to the sample to measure the surface topography thus ensuring the numerical aperture of the detection light with high throughput. However, a dedicated optical path to monitor the aberrations caused by the modulation from the sample is necessary and a complex optical path is added for aberration correction, which inevitably increases the design complexity and component costs of the optical system.
View Article and Find Full Text PDFLaser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics.
View Article and Find Full Text PDFJ Prosthodont
January 2025
Prosthodontist, Implant Dentistry Associates of Arlington, Arlington, Texas, USA.
Purpose: The purpose of this study was to analyze gingival fibroblast proliferation on additively manufactured polymethylmethacrylate (PMMA) groups with different surface characteristics namely no treatment group (NTG) and customized 250 µm diameter porosity (AM-250G) group.
Materials And Methods: 3D-printed NTG was compared for its influence on growth of cells to a additively manufactured surface with porosity (AM-250G). For each group (NTG, AM-250G) 20 samples of material were tested.
Sci Rep
January 2025
Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands.
This report explores the prevalence of keratoconus in a population-based cohort of adults aged 40 or older according to ten different definitions. All Rotterdam Study participants with reliable Pentacam scans and no prior corneal refractive surgery were cross-sectionally analysed (n = 2660). First, we applied a novel evidence-based definition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!