Pulmonary arterial hypertension (PAH) and hepatopulmonary syndrome (HPS) are rare pulmonary vascular complications of type 1 Gaucher disease (GD1). We examined GBA1 genotype, spleen status, Severity Score Index (SSI), and other patient characteristics as determinants of GD/PAH-HPS phenotype. We also examined the long-term outcomes of imiglucerase enzyme replacement therapy (ERT) +/- adjuvant therapies in 14 consecutive patients. We hypothesized a role of BMPR2 and ALK1 as genetic modifiers underlying GD/PAH-HPS phenotype. Median age at diagnosis of GD1 was 5 yrs (2-22); PAH was diagnosed at median 36 yrs (22-63). There was a preponderance of females (ratio 5:2). ERT was commenced at median 36.5 yrs (16-53) and adjuvant therapy at 36 yrs (24-57). GBA1 genotype was N370S homozygous in two patients, N370S heteroallelic in 12. Median SSI was 15 (7-20). All patients had undergone splenectomy at median age 12 yrs (2-30). In three patients, HPS was the initial presentation, and PAH developed after its resolution; in these three, HPS responded dramatically to ERT. In seven patients, sequencing of the coding regions of BMPR2 and ALK1 was undertaken: 3/7 were heterozygous for BMPR2 polymorphisms; none harbored ALK1 variants. With ERT (± adjuvant therapy), 5/14 improved dramatically, five remained stable, two worsened, and two died prematurely. In this largest series of GD/PAH-HPS patients, there is preponderance of females and N370S heteroallelic GBA1 genotype. Splenectomy appears essential to development of this phenotype. In some patients, HPS precedes PAH. BMPR2 and ALK1 appear not be modifier genes for this rare phenotype of GD. ERT +/- adjuvant therapy improves prognosis of this devastating GD phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782382 | PMC |
http://dx.doi.org/10.1007/s10545-011-9313-9 | DOI Listing |
Genes (Basel)
December 2024
1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Parkinson's disease (PD) is considered to be the second most prominent neurodegenerative disease and has a global prevalence. Glucocerebrosidase () gene mutations represent a significant hereditary risk factor for the development of PD and have a profound impact on the motor and cognitive progression of the disease. The aim of this review is to summarize the literature data on the prevalence, type, and peculiarities of mutations in populations of different ethnic backgrounds.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2024
Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Recently, an African ancestry-specific Parkinson disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant ( rs3115534 -G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups but is almost absent in European and Asian ancestry populations.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland.
Gaucher disease (GD) is a lysosomal lipid storage disorder caused by β-glucocerebrosidase (encoded by gene) activity deficiency, resulting in the accumulation of glucosylceramide (Gb1) and its deacylated metabolite glucosylsphingosine (lyso-Gb1). Lyso-Gb1 has been studied previously and proved to be a sensitive biomarker, distinguishing patients with GD from carriers and healthy subjects. It was shown that its level corresponds with β-glucocerebrosidase activity, thus it remains unknown as to why carriers have slightly higher lyso-Gb1 level than healthy population.
View Article and Find Full Text PDFParkinsonism Relat Disord
January 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China; Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China. Electronic address:
NPJ Aging
November 2024
Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!