A new, non-polarizable force field model (FFM) for imidazolium-based, room-temperature ionic liquids (RTILs), 1-ethyl-3-methyl-imidazolium tetrafluoroborate and 1-butyl-3-methyl-imidazolium tetrafluoroborate, has been developed. Modifying the FFM originally designed by Liu et al. (J. Phys. Chem. B, 2004, 108, 12978-12989), the electrostatic charges on interacting sites are refined according to partial charges calculated by explicit-ion density functional theory. The refined FFM reproduces experimental heats of vaporization, diffusion coefficients, ionic conductivities, and shear viscosities of RTILs, which is a significant improvement over the original model (Zh. Liu, Sh. Huang and W. Wang, J. Phys. Chem. B, 2004, 108, 12978-12989). The advantages of the proposed procedure include clarity, simplicity, and flexibility. Expanding the functionality of our FFM conveniently only requires modification of the electrostatic charges. Our FFM can be extended to other classes of RTILs as well as condensed matter systems in which the ionic interaction requires an account of polarization effects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp02778bDOI Listing

Publication Analysis

Top Keywords

force field
8
field model
8
ionic liquids
8
phys chem
8
chem 2004
8
2004 108
8
108 12978-12989
8
electrostatic charges
8
ffm
5
model simulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!