Tauopathic changes in the striatum of A53T α-synuclein mutant mouse model of Parkinson's disease.

PLoS One

Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States of America.

Published: March 2011

Tauopathic pathways lead to degenerative changes in Alzheimer's disease and there is evidence that they are also involved in the neurodegenerative pathology of Parkinson's disease [PD]. We have examined tauopathic changes in striatum of the α-synuclein (α-Syn) A53T mutant mouse. Elevated levels of α-Syn were observed in striatum of the adult A53T α-Syn mice. This was accompanied by increases in hyperphosphorylated Tau [p-Tau], phosphorylated at Ser202, Ser262 and Ser396/404, which are the same toxic sites also seen in Alzheimer's disease. There was an increase in active p-GSK-3β, hyperphosphorylated at Tyr216, a major and primary kinase known to phosphorylate Tau at multiple sites. The sites of hyperphosphorylation of Tau in the A53T mutant mice were similar to those seen in post-mortem striata from PD patients, attesting to their pathophysiological relevance. Increases in p-Tau were not due to alterations on protein phosphatases in either A53T mice or in human PD, suggesting lack of involvement of these proteins in tauopathy. Extraction of striata with Triton X-100 showed large increases in oligomeric forms of α-Syn suggesting that α-Syn had formed aggregates the mutant mice. In addition, increased levels of p-GSK-3β and pSer396/404 were also found associated with aggregated α-Syn. Differential solubilization to measure protein binding to cytoskeletal proteins demonstrated that p-Tau in the A53T mutant mouse were unbound to cytoskeletal proteins, consistent with dissociation of p-Tau from the microtubules upon hyperphosphorylation. Interestingly, α-Syn remained tightly bound to the cytoskeleton, while p-GSK-3β was seen in the cytoskeleton-free fractions. Immunohistochemical studies showed that α-Syn, pSer396/404 Tau and p-GSK-3β co-localized with one another and was aggregated and accumulated into large inclusion bodies, leading to cell death of Substantia nigral neurons. Together, these data demonstrate an elevated state of tauopathy in striata of the A53T α-Syn mutant mice, suggesting that tauopathy is a common feature of synucleinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061878PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017953PLOS

Publication Analysis

Top Keywords

mutant mouse
12
a53t mutant
12
mutant mice
12
α-syn
9
tauopathic changes
8
changes striatum
8
parkinson's disease
8
alzheimer's disease
8
a53t α-syn
8
cytoskeletal proteins
8

Similar Publications

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole.

View Article and Find Full Text PDF

Background: The retina, an integral part of the central nervous system, can exhibit protein accumulation (Aβ and pTau) associated with neurodegenerative diseases such as Alzheimer's disease (AD). Biochemical analysis revealed the existence of a distinct primary retinal tauopathy (PReT), differing from AD and primary age-related tauopathy (PART) brain lysates, suggesting it as a potential precursor for AD tauopathy with possible diagnostic value. However, it remains unclear whether retinal pTau pathology can spread from the eye into the brain.

View Article and Find Full Text PDF

Background: Lamin A is barely expressed in human brain neurons or in murine models such as mice and rats. However, in Alheimer´s disease (AD) brains, neurons in the hippocampus and entorhinal cortex abnormally express lamina A from the initial stages of the disease, being a biomarker together with phosphorylated Tau of the nuclear pathology of AD. Constipation and mesenteric neuronal loss are related to aging and neurodegenerative diseases such as AD.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Alleo Labs, San Francisco, CA, USA.

Background: Insulin-like Growth Factor-1 (IGF-1) and its receptor (IGF-1R) are known to play a role in biological aging. Several studies have explored the correlation between serum levels of IGF-1 and Alzheimer's-related dementia (AD). However, conflicting reports exist regarding whether elevated or reduced IGF-1 levels increase the risk of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!