An autosomal dominant missense mutation in αB-crystallin (αB-R120G) causes cataracts and desmin-related myopathy, but the underlying mechanisms are unknown. Here, we report the development of an αB-R120G crystallin knock-in mouse model of these disorders. Knock-in αB-R120G mice were generated and analyzed with slit lamp imaging, gel permeation chromatography, immunofluorescence, immunoprecipitation, histology, and muscle strength assays. Wild-type, age-matched mice were used as controls for all studies. Both heterozygous and homozygous mutant mice developed myopathy. Moreover, homozygous mutant mice were significantly weaker than wild-type control littermates at 6 months of age. Cataract severity increased with age and mutant gene dosage. The total mass, precipitation, and interaction with the intermediate filament protein vimentin, as well as light scattering of αB-crystallin, also increased in mutant lenses. In skeletal muscle, αB-R120G co-aggregated with desmin, became detergent insoluble, and was ubiquitinated in heterozygous and homozygous mutant mice. These data suggest that the cataract and myopathy pathologies in αB-R120G knock-in mice share common mechanisms, including increased insolubility of αB-crystallin and co-aggregation of αB-crystallin with intermediate filament proteins. These knock-in αB-R120G mice are a valuable model of the developmental and molecular biological mechanisms that underlie the pathophysiology of human hereditary cataracts and myopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060869PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017671PLOS

Publication Analysis

Top Keywords

homozygous mutant
12
mutant mice
12
knock-in mouse
8
mouse model
8
mutation αb-crystallin
8
human hereditary
8
knock-in αb-r120g
8
αb-r120g mice
8
heterozygous homozygous
8
intermediate filament
8

Similar Publications

Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.

View Article and Find Full Text PDF

Identification of Rht1 for plant height reduction in two wheat mutants and the effects on yield components.

J Plant Physiol

January 2025

State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Plant height determines lodging resistance and is closely linked to yield stability in wheat. In this study, we identified two semi-dwarf wheat mutants, designated je0370 and je0344, using the winter wheat cultivar Jing411 as the wild type (WT). Field experiments revealed that the plant height of these two mutants was significantly lower than that of the WT.

View Article and Find Full Text PDF

Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing.

View Article and Find Full Text PDF

Loss of does not affect bone and lean tissue in zebrafish.

JBMR Plus

February 2025

Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States.

Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 () as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of in zebrafish, an emerging model for bone and mineral research.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!