In this paper, an efficient analytical method for characterizing large array of plasmonic nanoparticles located over planarly layered substrate is introduced. The model is called dipole mode complex image (DMCI) method since the main idea lies in modeling a subwavelength spherical nanoparticle at its electric scattering resonance with an induced electric dipole and representing the electromagnetic (EM) fields of this electric dipole over the layered substrate in terms of finite complex images. The major advantages of the proposed method are its accuracy and rapid calculation in characterizing various kinds of large periodic and aperiodic arrays of nanoparticles on layered substrates. The computational time can be reduced significantly in compared to the traditional methods. The accuracy of the theoretical model is validated through comparison with numerical integration of Sommerfeld integrals. Moreover, the analytical results are compared well with those determined by full-wave finite difference time domain (FDTD) method. To demonstrate the capability of our technique, the performances of large arrays of nanoparticles on layered silicon substrates for efficient sunlight energy incoupling are studied.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.00A173DOI Listing

Publication Analysis

Top Keywords

nanoparticles layered
12
layered substrate
12
large array
8
array plasmonic
8
plasmonic nanoparticles
8
dipole mode
8
complex image
8
electric dipole
8
arrays nanoparticles
8
layered
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!