High dielectric constant aluminum oxide (Al(2)O(3)) is frequently used as the gate oxide in high electron mobility transistors and the impact of its deposition by radio frequency (RF) magnetron sputtering on the structural and electrical properties of multilayer epitaxial graphene (MLG) grown by graphitization of silicon carbide (SiC) is reported. Micro-Raman spectroscopy and temperature dependent Hall mobility measurements reveal that the processing induced changes to the structural and electrical properties of the MLG can be minimal when the oxide deposition conditions are optimal. High-resolution transmission electron microscopy (HRTEM) analysis confirms that the Al(2)O(3)/MLG interface is relatively sharp and that our thickness approximation of the MLG using angle resolved x-ray photoelectron spectroscopy (ARXPS) is accurate. An interface trap density of 5.1 × 10(10) eV(-1) cm(-2) was determined using capacitance-voltage techniques. The totality of our results indicates that ARXPS can be used as a nondestructive tool to measure the thickness of MLG, and that RF sputtered Al(2)O(3) can be used as a high dielectric (high-k) constant gate oxide in multilayer graphene based transistor applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/20/205703 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical Engineering and Electronics, University of Liverpool Brownlow Hill Liverpool L69 3GJ UK
In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Memory and Catalyst Research Center, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea.
MoO is a promising transition metal oxide due to its high dielectric constant (κ) and multifunctionality in electronic and optoelectronic applications. Oxidation-induced nanoscale MoO, synthesized via oxidation scanning probe lithography (o-SPL) of MoS, requires in-depth characterization of its dielectric properties. In this study, we measured the κ of a single MoO nanostructure, which was confirmed to be in the amorphous phase through water solubility tests and high-resolution transmission electron microscopy (HRTEM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!