Accurately quantifying changes in soil carbon (C) stocks with land-use change is important for estimating the anthropogenic fluxes of greenhouse gases to the atmosphere and for implementing policies such as REDD (Reducing Emissions from Deforestation and Degradation) that provide financial incentives to reduce carbon dioxide fluxes from deforestation and land degradation. Despite hundreds of field studies and at least a dozen literature reviews, there is still considerable disagreement on the direction and magnitude of changes in soil C stocks with land-use change. We conducted a meta-analysis of studies that quantified changes in soil C stocks with land use in the tropics. Conversion from one land use to another caused significant increases or decreases in soil C stocks for 8 of the 14 transitions examined. For the three land-use transitions with sufficient observations, both the direction and magnitude of the change in soil C pools depended strongly on biophysical factors of mean annual precipitation and dominant soil clay mineralogy. When we compared the distribution of biophysical conditions of the field observations to the area-weighted distribution of those factors in the tropics as a whole or the tropical lands that have undergone conversion, we found that field observations are highly unrepresentative of most tropical landscapes. Because of this geographic bias we strongly caution against extrapolating average values of land-cover change effects on soil C stocks, such as those generated through meta-analysis and literature reviews, to regions that differ in biophysical conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076837 | PMC |
http://dx.doi.org/10.1073/pnas.1016774108 | DOI Listing |
J Radiat Res
January 2025
International Agency for Research on Cancer, Environment and Lifestyle Epidemiology Branch, Av. Tony Garnier, Lyon 69007, France.
Between 1949 and 1962 the Soviet Union performed atmospheric tests of nuclear weapons at the Semipalatinsk nuclear test site (SNTS) in Kazakhstan, resulting in widespread contamination of the surrounding region with radioactive fallout. Settlements in the southeast Abai oblast of Kazakhstan, close to the border with China, are not thought to have received significant fallout from the SNTS. There is, however, evidence that the study area, including Makanchi, Urdzhar and Taskesken villages, was contaminated by atmospheric nuclear tests performed by China at the Lop Nor NTS between 1964 and 1980.
View Article and Find Full Text PDFData Brief
February 2025
CREA - Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, Italy.
Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
Urban expansion has triggered significant changes in soil organic carbon (SOC), profoundly affecting the global carbon cycle. The accurate prediction of the global distribution of urban SOC and assessment of the impact of future urban expansion on SOC are essential for urban soil carbon management. By using data from 377 urban locations, this study estimated the global distribution of urban SOC and projected future SOC changes under two socioeconomic scenarios: SSP126 and SSP585.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
Ecosystem restoration can contribute to climate change mitigation, as recovering ecosystems sequester atmospheric CO in biomass and soils. It is, however, unclear how much soil organic carbon (SOC) stocks recover across different restored ecosystems. Here, we show SOC recovery in different contexts globally by consolidating 41 meta-analyses into a second-order meta-analysis.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!