Synergistic suppression of prostatic cancer cells by coexpression of both murine double minute 2 small interfering RNA and wild-type p53 gene in vitro and in vivo.

J Pharmacol Exp Ther

Prostate Diseases Prevention and Treatment Research Center, Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, People’s Republic of China.

Published: July 2011

Our objective was to evaluate cell growth and death effects by inhibiting Murine Double Minute 2 (MDM2) expression in human prostate cancer cells overexpressing the wild-type (WT) p53 gene. Prostate PC-3 tumor cells were transfected with a plasmid containing either mdm2 small interfering (Si-mdm2) or the WT p53 gene (Pp53) alone, or both (Pmp53), using Lipofectamine in vitro and attenuated Salmonella enterica serovar Typhi vaccine strain Ty21a (Salmonella Typhi Ty21a) in vivo. Cell growth, apoptosis, and the expression of related genes and proteins were examined in vitro and in vivo by flow cytometry and Western blot assays. We demonstrated that human prostate tumors had increased expression of MDM2 and mutant p53 proteins. Transfection of the PC-3 cells with the Pmp53 plasmid in vitro offered significant inhibition of cell growth and an increase in apoptotic cell death compared with that of the Si-mdm2 or Pp53 group. These effects were associated with up-regulation of p21 and down-regulation of hypoxia-inducible factor 1α expression in Pmp53-transfected cells. To validate the in vitro findings, the nude mice implanted with PC-3 cells were treated with attenuated Salmonella Typhi Ty21a carrying the plasmids, which showed that the Pmp53 plasmid significantly inhibited the tumor growth rate in vivo compared with that of the Si-mdm2 or Pp53 plasmid alone. Tumor tissues from mice treated with the Pmp53 plasmid showed increased expression of p21 and decreased expression of hypoxia-inducible factor 1α proteins, with an increased apoptotic effect. These results suggest that knockdown of mdm2 expression by its specific small interfering RNA with overexpression of the WT p53 gene offers synergistic inhibition of prostate cancer cell growth in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.111.180364DOI Listing

Publication Analysis

Top Keywords

p53 gene
16
cell growth
16
small interfering
12
vitro vivo
12
pmp53 plasmid
12
cancer cells
8
murine double
8
double minute
8
interfering rna
8
wild-type p53
8

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Molecular classification of endometrial cancer: Impact on adjuvant treatment planning.

Cytojournal

November 2024

1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece.

Objective: The traditional histopathological analysis of endometrial cancer (EC) is the main risk group classification tool (low, intermediate, high-intermediate, and high) for the implementation of adjuvant treatment. The International Federation of Gynecology and Obstetrics staging system of EC has incorporated a new molecular classification that serves as a new triage tool for optimal treatment planning for these patients. Our study aimed to investigate the prognostic role of the new molecular classification in EC.

View Article and Find Full Text PDF

Hyalinizing clear cell carcinoma (HCCC) is a rare, low-grade epithelial tumor predominantly found in the salivary glands, with tracheal involvement being particularly uncommon. The present study details a case of primary tracheal HCCC and its clinical presentation, diagnostic challenges and the therapeutic approach used. A 34-year-old female patient presented with a 1-month history of intermittent dyspnea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!