Introduction: Collagen-induced arthritis (CIA) is a mouse model for rheumatoid arthritis (RA) and is induced after immunization with type II collagen (CII). CIA, like RA, is an autoimmune disease leading to destruction of cartilage and joints, and both the priming and inflammatory phases have been suggested to be dependent on proteases. In particular, the cysteine proteases have been proposed to be detrimental to the arthritic process and even immunomodulatory. A natural inhibitor of cysteine proteases is cystatin C.

Methods: Cystatin C-deficient, sufficient and heterozygous mice were tested for onset, incidence and severity of CIA. The effect of cystatin C-deficiency was further dissected by testing the inflammatory effector phase of CIA; that is, collagen antibody-induced arthritis model and priming phase, that is, T cell response both in vivo and in vitro. In addition, in order to determine the importance of T cells and antigen-presenting cells (APCs), these cell populations were separated and in vitro T cell responses determined in a mixed co-culture system. Finally, flow cytometry was used in order to further characterize cell populations in cystatin C-deficient mice.

Results: Here, we show that mice lacking cystatin C, develop arthritis at a higher incidence and an earlier onset than wild-type controls. Interestingly, when the inflammatory phase of CIA was examined independently from immune priming then cystatin C-deficiency did not enhance the arthritis profile. However, in line with the enhanced CIA, there was an increased T cell and B cell response as delayed-type hypersensitivity reaction and anti-CII antibody titers were elevated in the cystatin C-deficient mice after immunization. In addition, the ex vivo naïve APCs from cystatin C-deficient mice had a greater capacity to stimulate T cells. Interestingly, dendritic cells had a more activated phenotype in naïve cystatin C-deficient mice.

Conclusions: The lack of cystatin C enhances CIA and primarily affects in vivo priming of the immune system. Although the mechanism of this is still unknown, we show evidence for a more activated APC compartment, which would elevate the autoimmune response towards CII, thus resulting in an enhanced development of chronic arthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132044PMC
http://dx.doi.org/10.1186/ar3298DOI Listing

Publication Analysis

Top Keywords

cystatin c-deficient
20
cystatin
11
type collagen
8
chronic arthritis
8
cysteine proteases
8
cystatin c-deficiency
8
phase cia
8
cell response
8
cell populations
8
c-deficient mice
8

Similar Publications

Cystatin C is a potent cysteine protease inhibitor that plays an important role in various biological processes including cancer, cardiovascular diseases and neurodegenerative diseases. However, the role of CstC in inflammation is still unclear. In this study we demonstrated that cystatin C-deficient mice were significantly more sensitive to the lethal LPS-induced sepsis.

View Article and Find Full Text PDF

Cystatin C influences the autoimmune but not inflammatory response to cartilage type II collagen leading to chronic arthritis development.

Arthritis Res Ther

March 2011

Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 2, 171 77, Stockholm, Sweden.

Introduction: Collagen-induced arthritis (CIA) is a mouse model for rheumatoid arthritis (RA) and is induced after immunization with type II collagen (CII). CIA, like RA, is an autoimmune disease leading to destruction of cartilage and joints, and both the priming and inflammatory phases have been suggested to be dependent on proteases. In particular, the cysteine proteases have been proposed to be detrimental to the arthritic process and even immunomodulatory.

View Article and Find Full Text PDF

Background: Cysteine protease cathepsins are important in extracellular matrix protein degradation, cell apoptosis, and angiogenesis. Mice lacking cathepsins are protected from tumor progression in several animal models, suggesting that the regulation of cathepsin activities controls the growth of various malignant tumors.

Methods And Results: We tested the role of cathepsins using a mouse model of multistage epithelial carcinogenesis, in which the human keratin-14 promoter/enhancer drove the expression of human papillomavirus type 16 (HPV16) early region E6/E7 transgenes.

View Article and Find Full Text PDF

Objective: Degradation of extracellular matrix plays an important role in growth and destabilization of atherosclerotic plaques. Cystatin C, inhibitor of the collagen- and elastin-degrading cysteine proteases of the cathepsin family, is produced by virtually all cell types. It is present in the normal artery wall but severely reduced in human atherosclerotic lesions.

View Article and Find Full Text PDF

Absence of the protease inhibitor cystatin C in inflammatory cells results in larger plaque area in plaque regression of apoE-deficient mice.

Atherosclerosis

May 2005

Department of Medicine, Section for Experimental Cardiovascular Research, Malmö University Hospital, Lund University, 205 02 Malmö, Sweden.

Matrix remodelling plays an important role in regulating plaque stability. Cystatin C, an inhibitor of the elastin-degrading cysteine proteases of the cathepsin family, is believed to be one of the key protease inhibitors in this process. The aim of the present study was to investigate the role of leukocyte-specific cystatin C expression under conditions that favour plaque regression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!