The mechanism by which apolipoprotein E (ApoE) isoforms functionally influence the risk and progression of late-onset Alzheimer's disease (LOAD) remains hitherto unknown. Herein, we present evidence that all ApoE isoforms bind to nitric oxide synthase 1 (NOS1) and that such protein-protein interaction results in S-nitrosylation of ApoE2 and ApoE3 but not ApoE4. Our structural analysis at the atomic level reveals that S-nitrosylation of ApoE2 and ApoE3 proteins may lead to conformational changes resulting in the loss of binding to low-density lipoprotein (LDL) receptors. Collectively, our data suggest that S-nitrosylation of ApoE proteins may play an important role in regulating lipid metabolism and in the pathogenesis of LOAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082618 | PMC |
http://dx.doi.org/10.1021/bi200266v | DOI Listing |
Circulation
June 2024
Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.).
Background: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection.
View Article and Find Full Text PDFEMBO Rep
January 2024
National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone.
View Article and Find Full Text PDFRedox Biol
June 2022
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, China. Electronic address:
Endothelial dysfunction is the initial process of atherosclerosis. Heat shock protein 90 (Hsp90), as a molecular chaperone, plays a crucial role in various cardiovascular diseases. Hsp90 function is regulated by S-nitrosylation (SNO).
View Article and Find Full Text PDFJ Cell Mol Med
January 2021
Department of Cardiology, The Second Hospital affiliated to Harbin Medical University, Harbin, China.
The effects of long-term nitrate therapy are compromised due to protein S-Nitrosylation, which is mediated by nitric oxide (NO). This study is to determine the role of Akt S-Nitrosylation in the recovery of heart functions after ischaemia. In recombinant Akt protein and in HEK293 cells, NO donor decreased Akt activity and induced Akt S-Nitrosylation, but was abolished if Akt protein was mutated by replacing cysteine 296/344 with alanine (Akt-C296/344A).
View Article and Find Full Text PDFAntioxid Redox Signal
July 2019
1 Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
The coordination of neurons to execute brain functions requires plenty of oxygen. Thus, it is not surprising that the chronic hypoxia resulting from chronic obstructive pulmonary diseases (COPD) can cause neuronal damage. Injury in the cortex can give rise to anxiety and cognitive dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!