The optical properties and charge trapping phenomena observed on oxide nanocrystal ensembles can be strongly influenced by the presence of nanocrystal interfaces. MgO powders represent a convenient system to study these effects due to the well-defined shape and controllable size distributions of MgO nanocrystals. The spectroscopic properties of nanocrystal interfaces are investigated by monitoring the dependence of absorption characteristics on the concentration of the interfaces in the nanopowders. The presence of interfaces is found to affect the absorption spectra of nanopowders more significantly than changing the size of the constituent nanocrystals and, thus, leading to the variation of the relative abundance of light-absorbing surface structures. We find a strong absorption band in the 4.0-5.5 eV energy range, which was previously attributed to surface features of individual nanocrystals, such as corners and edges. These findings are supported by complementary first-principles calculations. The possibility to directly address such interfaces by tuning the energy of excitation may provide new means for functionalization and chemical activation of nanostructures and can help improve performance and reliability for many nanopowder applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082970PMC
http://dx.doi.org/10.1021/nn200062dDOI Listing

Publication Analysis

Top Keywords

nanocrystal interfaces
12
optical properties
8
properties nanocrystal
8
interfaces
6
nanocrystal
4
interfaces compressed
4
compressed mgo
4
mgo nanopowders
4
nanopowders optical
4
properties charge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!