The bromo-substituted bisdiselenazolyl radical 4b (R(1) = Et, R(2) = Br) is isostructural with the corresponding chloro-derivative 4a (R(1) = Et, R(2) = Cl), both belonging to the tetragonal space group P(4)2(1)m and consisting of slipped π-stack arrays of undimerized radicals. Variable temperature, ambient pressure conductivity measurements indicate a similar room temperature conductivity near 10(-4) S cm(-1) for the two compounds, but 4b displays a slightly higher thermal activation energy E(act) (0.23 eV) than 4a (0.19 eV). Like 4a, radical 4b behaves as a bulk ferromagnet with an ordering temperature of T(C) = 17.5 K. The coercive field H(c) (at 2 K) of 1600 Oe for 4b is, however, significantly greater than that observed for 4a (1370 Oe). High pressure (0-15 GPa) structural studies on both compounds have shown that compression reduces the degree of slippage of the π-stacks, which gives rise to changes in the magnetic and conductive properties of the radicals. Relatively mild loadings (<2 GPa) cause an increase in T(C) for both compounds, that of 4b reaching a maximum value of 24 K; further compression to 5 GPa leads to a decrease in T(C) and loss of magnetization. Variable temperature and pressure conductivity measurements indicate a decrease in E(act) with increasing pressure, with eventual conversion of both compounds from a Mott insulating state to one displaying weakly metallic behavior in the region of 7 GPa (for 4a) and 9 GPa (for 4b).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja200391j | DOI Listing |
Small
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Mechanical and Manufacturing Department, Mondragon University, 20500 Mondragon, Spain.
This study investigates fixed and moving mesh methodologies for modeling liquid metal-free surface deformation during the induction melting process. The numerical method employs robust coupling of magnetic fields with the hydrodynamics of the turbulent stirring of liquid metal. Free surface tracking is implemented using the fixed mesh level set (LS) and the moving mesh arbitrary Lagrangian-Eulerian (ALE) formulation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia.
In situ measurements of the chemical identity and quantity of anode gases during electrochemical measurements and rare earth (RE) electrolysis from fluoride-based molten salts composed of different kinds of rare earth oxides (REOs) were performed using FTIR spectrometry. Linear sweep voltammetry (LSV) was carried out to characterize oxidation processes and determine the anodic effect from NdF + PrF + LiF + REO melt. RE complex formation and subsequent reactions on the GC anode surface were discussed to understand the formation pathways of CO/CO and perfluorocarbon gases (PFC), mainly CF and CF.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada.
This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!