Determining the mechanism by which fish diversity influences production.

Oecologia

Illinois Natural History Survey and Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.

Published: September 2011

Understanding the ability of biodiversity to govern ecosystem function is essential with current pressures on natural communities from species invasions and extirpations. Changes in fish communities can be a major determinant of food web dynamics, and even small shifts in species composition or richness can translate into large effects on ecosystems. In addition, there is a large information gap in extrapolating results of small-scale biodiversity-ecosystem function experiments to natural systems with realistic environmental complexity. Thus, we tested the key mechanisms (resource complementarity and selection effect) for biodiversity to influence fish production in mesocosms and ponds. Fish diversity treatments were created by replicating species richness and species composition within each richness level. In mesocosms, increasing richness had a positive effect on fish biomass with an overyielding pattern indicating species mixtures were more productive than any individual species. Additive partitioning confirmed a positive net effect of biodiversity driven by a complementarity effect. Productivity was less affected by species diversity when species were more similar. Thus, the primary mechanism driving fish production in the mesocosms was resource complementarity. In the ponds, the mechanism driving fish production changed through time. The key mechanism was initially resource complementarity until production was influenced by the selection effect. Varying strength of intraspecific interactions resulting from differences in resource levels and heterogeneity likely caused differences in mechanisms between the mesocosm and pond experiments, as well as changes through time in the ponds. Understanding the mechanisms by which fish diversity governs ecosystem function and how environmental complexity and resource levels alter these relationships can be used to improve predictions for natural systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-011-1967-3DOI Listing

Publication Analysis

Top Keywords

fish diversity
12
resource complementarity
12
fish production
12
fish
8
ecosystem function
8
species
8
species composition
8
composition richness
8
natural systems
8
environmental complexity
8

Similar Publications

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Our understanding of the vertebrate immune system is dominated by a few model organisms such as mice. This use of a few model systems is reasonable if major features of the immune systems evolve slowly and are conserved across most vertebrates, but may be problematic if there is substantial macroevolutionary change in immune responses. Here, we present a test of the macroevolutionary stability, across 15 species of jawed fishes, of the transcriptomic response to a standardized immune challenge.

View Article and Find Full Text PDF

Constructing age-structured matrix population models for all fishes.

PeerJ

January 2025

Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America.

Matrix population models are essential tools in conservation biology, offering key metrics to guide species management and conservation planning. However, the development of these models is often limited by insufficient life history data, particularly for non-charismatic species. This study addresses this gap by using life history data from FishBase and the FishLife R package, complemented by size-dependent natural mortality estimates, to parameterize age-structured matrix population models applicable to most fish species.

View Article and Find Full Text PDF

Bioinspired surface structures for added shear stabilization in suction discs.

Sci Rep

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Many aquatic organisms utilize suction-based organs to adhere to diverse substrates in unpredictable environments. For multiple fish species, these adhesive discs include a softer disc margin consisting of surface structures called papillae, which stabilize and seal on variable substrates. The size, arrangement, and density of these papillae are quite diverse among different species, generating complex disc patterns produced by these structures.

View Article and Find Full Text PDF

Environmental factors play a fundamental role in shaping fish assemblage in aquatic ecosystems. The present study describes the fish assemblage structure on the spatial scale in Pong Reservoir, which lies in foothills of the Northwestern Himalaya within the river Beas basin. Through sophisticated enviro assessment techniques, using ArcGIS mapping, this study provides valuable insight into how physicochemical factors shape the fish assemblage in the reservoir.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!