https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=21441867&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 214418672011061620211020
1420-30491632011Mar22Molecules (Basel, Switzerland)MoleculesInter-population variability of terpenoid composition in leaves of Pistacia lentiscus L. from Algeria: a chemoecological approach.264626572646-5710.3390/molecules16032646Three different altitudes were selected to study the variability of terpenoid composition from leaves of female plants of Pistacia lentiscus L. throughout the elevation gradient. GC-MS analyses showed that terpenoid contents change with altitude. Forty nine compounds were identified with a high interpopulation variability for low- and midaltitude sites that also exhibited the same major components when data were expressed on dry weight basis. However, Two-Way-ANOVA followed by Tukey's post hoc test showed that monoterpene hydrocarbons increased with elevation, giving values of 21.7, 37.5 and 221.5 µg g⁻¹ dw for low- mid- and highlands, respectively. On the other hand, applying P.C.A. with data expressed in percentage of the chromatogram of the volatile extract led to the identification of three chemotypes associated with altitudinal levels. In highlands (Group I), the major compounds were β-caryophyllene (12%), δ-cadinene (9.3%) and a-pinene (6.3%) while in midlands (Group II), β-caryophyllene (11.5%), δ-cadinene (8.6%) and caryophyllene oxide (6.8%) were the main components. In lowlands (Group III) δ-cadinene (10.9%), cubebol (10.5%) and β-bisabolene (7.7%) were chiefly present. Hence, the involvement of genetic factors, temperature and drought in the chemical polymorphism of P. lentiscus associated with elevation is discussed in this report.SaidSamir AitSAFaculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud MAMMERI BP 17 Tizi-Ouzou, Algeria.FernandezCatherineCGreffStéphaneSTorreFranckFDerridjArezkiAGauquelinThierryTMevyJean-PhilippeJPengJournal ArticleResearch Support, Non-U.S. Gov't20110322
SwitzerlandMolecules1009640091420-30490TerpenesIMPistaciachemistryPlant LeaveschemistryTerpeneschemistry
2011222201131720113182011329602011329602011617602011322epublish21441867PMC625960810.3390/molecules16032646molecules16032646Naghdi Badi H., Yazdani D., Mohammad A.S., Nazari F. Effects of spacing and harvesting on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind. Crop. Prod. 2004;19:231–236. doi: 10.1016/j.indcrop.2003.10.005.10.1016/j.indcrop.2003.10.005Yu F.N.A., Utsumi R. Diversity, regulation, and genetic manipulation of plant mono-and sesquiterpenoid biosynthesis. Cell. Mol. Life Sci. 2009;66:3043–3052. doi: 10.1007/s00018-009-0066-7.10.1007/s00018-009-0066-7PMC1111575319547916Kofidis G., Bosabalidis A., Moustakas M. Chemical composition of essential oils from leaves and twigs of Pistacia lentiscus, Pistacia lentiscus var. chia, and Pistacia terebinthus from Turkey. Pharm. Biol. 2003;42:360–366.Tkachev A.V., Korolyuk E.A., Letchamo W. Chemical screening of volatile oil- bearing flora of Siberia IX. Variations in chemical composition of the essential oil of Heteropappus altaicus Willd. (Novopokr.) growing wild at different altitudes of Altai Region, Russia. J. Essent. Oil Res. 2006;18:149–151. doi: 10.1080/10412905.2006.9699048.10.1080/10412905.2006.9699048Agnihotri V.K., Lattoo S.K., Thappa R.K., Kaul P., Qazi G.N., Dhar A.K., Saraf A., Kapahi B.K., Saxena R.K., Agarwal S.G. Chemical variability in the essential oil components of Achillea millefolium Agg. from different Himalayan habitats (India) Planta Med. 2005;71:280–283. doi: 10.1055/s-2005-837828.10.1055/s-2005-83782815770553Munne-Bosch S., Penuelas J. Photo- and antioxidative protection during summer leaf senescence in Pistacia lentiscus L. grown under Mediterranean field conditions. Ann. Bot. 2003;92:385–391. doi: 10.1093/aob/mcg152.10.1093/aob/mcg152PMC425751412871848Castro-Diez P., Villar-Salvador P., Perez-Rontome C., Maestro-Martinez M., Montserrat-Marti G. Leaf morphology, leaf chemical composition and stem xylem characteristics in two Pistacia (Anacardiaceae) species along a climatic gradient. Flora. 1998;193:195–202.Ozturk M., Dogan Y., Sakcali M.S., Doulis A., Karam F. Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. & Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the east Mediterranean ecosystem. J. Environ. Biol. 2010;31:233–245.20648838Barazani O., Golan-Goldhirsh A. Salt-driven interactions between Pistacia lentiscus and Salsola inermis. Environ. Sci. Poll. Res. 2009;16:855–861. doi: 10.1007/s11356-009-0231-4.10.1007/s11356-009-0231-419727882Verdu M., Garcia-Fayos P. Reproductive ecology of Pistacia lentiscus L. (Anacardiaceae): an evolutionary anachronism in the Mediterranean shrubland. Rev. Chil. Hist. Nat. 2002;75:57–65.Charef M., Yousfi M., Saidi M., Stocker P. Determination of the fatty acid composition of acorn (Quercus), Pistacia lentiscus seeds growing in Algeria. J. Am. Oil Chem. Soc. 2008;85:921–924. doi: 10.1007/s11746-008-1283-1.10.1007/s11746-008-1283-1Janakat S., Al-Merie H. Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. J. Ethnopharmacol. 2002;83:135–138. doi: 10.1016/S0378-8741(02)00241-6.10.1016/S0378-8741(02)00241-612413719Benhammou N., Bekkara F.A., Panovska T.K. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol. 2008;2:022–028.Atmani D., Chaher N., Berboucha M., Ayouni K., Lounis H., Boudaoud H., Debbache N. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009;112:303–309. doi: 10.1016/j.foodchem.2008.05.077.10.1016/j.foodchem.2008.05.077Fahn A. Secretory Tissues in Plants. Academic Press; London, UK: 1979.Llusià J., Peñuelas J. Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can. J. Bot. Rev. Can. Bot. 1998;76:1366–1373.Zrira S., Elamrani A., Benjilali B. Chemical composition of the essential oil of Pistacia lentiscus L. from Morocco - a seasonal variation. Flavour Fragr. J. 2003;18:475–480. doi: 10.1002/ffj.1221.10.1002/ffj.1221Duru M.E., Cakir A., Kordali S., Zengin H., Harmandar M., Izumi S., Hirata T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia. 2003;74:170–176. doi: 10.1016/S0367-326X(02)00318-0.10.1016/S0367-326X(02)00318-012628418Barra A., Coroneo V., Dessi S., Cabras P., Angioni A. Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agr. Food Chem. 2007;55:7093–7098. doi: 10.1021/jf071129w.10.1021/jf071129w17658828Gardeli C., Vassiliki P., Athanasios M., Kibouris T., Komaitis M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008;107:1120–1130. doi: 10.1016/j.foodchem.2007.09.036.10.1016/j.foodchem.2007.09.036Fernandez A., Camacho A., Fernandez C., Altarejos A., Perez P. Composition of the essential oils from galls and aerial parts of Pistacia lentiscus L. J. Essent. Oil Res. 2000;12:19–23. doi: 10.1080/10412905.2000.9712031.10.1080/10412905.2000.9712031Tzakou O., Bazos I., Yannitsaros A. Volatile metabolites of Pistacia atlantica Desf. from Greece. Flavour Fragr. J. 2007;22:358–362. doi: 10.1002/ffj.1805.10.1002/ffj.1805Haider F., Kumar N., Banerjee S., Naqvi A.A., Bagchi G.D. Effect of Altitude on the essential Oil Constituents of Artemisia roxburghiana Besser var. purpurascens (Jacq.) Hook. J. Essent. Oil Res. 2009;21:303–304. doi: 10.1080/10412905.2009.9700177.10.1080/10412905.2009.9700177Vokou D., Kokkini S., Bessiere J.M. Geographic-Variation of Greek Oregano (Origanum-Vulgare ssp Hirtum) Essential Oils. Biochem. Syst. Ecol. 1993;21:287–295. doi: 10.1016/0305-1978(93)90047-U.10.1016/0305-1978(93)90047-UBilger W., Rolland M., Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem. Photobiol. Sci. 2007;6:190–195. doi: 10.1039/b609820g.10.1039/b609820g17277843Congiu R., Falconieri D., Marongiu B., Piras A., Porcedda S. Extraction and isolation of Pistacia lentiscus L. essential oil by supercritical CO2. Flavour Fragr. J. 2002;17:239–244. doi: 10.1002/ffj.1095.10.1002/ffj.1095Mecherara-Idjeri S., Hassani A., Castola V., Casanova J. Composition and Chemical Variability of the Essential oil from Pistacia lentiscus L. Growing Wild in Algeria Part: Leaf Oil. J. Essent. Oil Res. 2008;20:32–38. doi: 10.1080/10412905.2008.9699415.10.1080/10412905.2008.9699415Tiwari M., Kakkar P. Plant derived antioxidants - Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol. In Vitro. 2009;23:295–301. doi: 10.1016/j.tiv.2008.12.014.10.1016/j.tiv.2008.12.01419135518Hudaib M., Aburjai T. Volatile components of Thymus vulgaris L. from wild-growing and cultivated plants in Jordan. Flavour Fragr. J. 2007;22:322–327. doi: 10.1002/ffj.1800.10.1002/ffj.1800Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2009. Available online: http://www.R-project.org. ISNB 3-900051-07-0.Dray S., Dufour A.B., Chessel D. The ade4 package-II: Two-table and K-table methods. R News. 2007;7:47–52.De Mendiburu F. Agricolae: Statistical Procedures for Agricultural Research, R package version 1.0-9. [on 24 February 2010]. Available online: http://CRAN.R-project.org/package=agricolae,accessed.