Endoplasmic-reticulum calcium depletion and disease.

Cold Spring Harb Perspect Biol

Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven Campus Gasthuisberg O&N I, Belgium.

Published: June 2011

The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098671PMC
http://dx.doi.org/10.1101/cshperspect.a004317DOI Listing

Publication Analysis

Top Keywords

ca2+ depletion
8
ca2+
6
endoplasmic-reticulum calcium
4
calcium depletion
4
depletion disease
4
disease endoplasmic
4
endoplasmic reticulum
4
reticulum intracellular
4
intracellular ca2+
4
ca2+ store
4

Similar Publications

Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis.

Redox Biol

December 2024

Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:

Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.

eNeuro

December 2024

Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury.

View Article and Find Full Text PDF

Regulation of SR and mitochondrial Ca signaling by L-type Ca channels and Na/Ca exchanger in hiPSC-CMs.

Cell Calcium

December 2024

Cardiac Signaling Center of USC, MUSC and Clemson University, 68 President St BEB 306, Charleston, SC 29425, USA. Electronic address:

Rationale & Methods: While signaling of cardiac SR by surface membrane proteins (I & I) is well studied, the regulation of mitochondrial Ca by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.

Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na induced SR Ca release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca contribution to low Na triggered SR Carelease.

View Article and Find Full Text PDF

Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells.

Ocul Surf

December 2024

Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA. Electronic address:

Purpose: To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling.

Methods: Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5 and Trpv4 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!