Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093127PMC
http://dx.doi.org/10.1093/pcp/pcr035DOI Listing

Publication Analysis

Top Keywords

network barley
12
co-expression network
12
comparative analysis
12
barley
8
gene discovery
8
transcriptome data
8
co-expression analysis
8
data sets
8
barley transcriptome
8
data set
8

Similar Publications

Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance.

View Article and Find Full Text PDF

The role of Ancestral MicroRNAs in grass inflorescence development.

J Plant Physiol

January 2025

Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks.

View Article and Find Full Text PDF

Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance.

View Article and Find Full Text PDF

Modulating the highland barley hordein/glutelin ratio can improve reconstituted fermented dough characteristics to promote Chinese Mantou quality.

Food Res Int

January 2025

School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

To improve the defective processing of barley fermented dough, this study constructed barley model dough using reconstituted hordein/glutelin ratios (75:25, 50:50, and 25:75) and elucidated its regulatory roles and potential mechanisms. SEM and CLSM results showed that increasing the hordein ratio improved the continuity and completion of the reconstituted gluten network compared to Control, thus allowing the gluten to stretch and elongate during fermentation. Also, LF-NMR revealed that the water distribution of the reconstituted system tended to shift from a free to a bound state, contributing to water retention during the dough hydration phase.

View Article and Find Full Text PDF
Article Synopsis
  • The Mla locus in barley includes diverse genes that help the plant resist certain fungal pathogens through specific immune responses.
  • Researchers identified a gene, Scs6, that differs from Mla genes and makes barley susceptible to the necrotrophic fungus Bipolaris sorokiniana.
  • The Scs6 protein interacts with a peptide effector from the fungus to trigger cell death in barley, indicating it plays a role in disease susceptibility, and may lead to advancements in developing crops resistant to these pathogens.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!