Diffusion tensor MRI reveals chronic alterations in white matter despite the absence of a visible ischemic lesion on conventional MRI: a nonhuman primate study.

Stroke

CERVOxy, Hypoxia and Cerebrovascular Pathophysiology, CI-NAPS UMR-6232, University of Caen, 59, Boulevard Henri Becquerel BP5229, Caen, France 14074.

Published: May 2011

Background And Purpose: The impact of stroke on white matter is poorly described in preclinical investigations mainly based on rodents with a low white (WM)/gray matter ratio. Using diffusion tensor imaging, we evaluated WM alterations and correlated them with sensorimotor deficits after stroke in the marmoset, a nonhuman primate that displays a WM/gray matter ratio close to that of humans.

Methods: Marmosets underwent a transient brain ischemia (3-hour). Eight serial MRI examinations were made during ischemia and up to 45 days after reperfusion. The sensorimotor deficits were evaluated weekly over 45 days. To assess WM alterations, the SD of the angle of the first eigenvector projection was calculated in the cortex and in the internal and external capsules. The fiber-tracking approach was used to measure the number and the length of bundles.

Results: Changes in the apparent diffusion coefficient and the fractional anisotropy values were similar during the temporal evolution of the lesion in the marmoset model of ischemia to that reported in patients with stroke. Despite an absence of visible lesions on T2-MRI and diffusion tensor imaging at the chronic stage, diffusion tensor MRI evidenced alterations in WM by the increase in the standard deviation of the angle of the first eigenvector projection in the cortex, internal and external capsules, and the decrease in the number of bundles of fibers tracked. The disruption of WM was strongly correlated with the chronic sensorimotor deficits.

Conclusions: Despite an absence of a visible ischemic lesion at the chronic stage, diffusion tensor MRI revealed disorganization of WM, which probably underlies the persistence of functional deficits.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.110.596650DOI Listing

Publication Analysis

Top Keywords

diffusion tensor
20
tensor mri
12
despite absence
12
absence visible
12
white matter
8
visible ischemic
8
ischemic lesion
8
nonhuman primate
8
wm/gray matter
8
matter ratio
8

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors.

Cancers (Basel)

December 2024

Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.

Skull base tumors such as meningiomas and schwannomas are often pathologically benign. However, surgery for these tumors poses significant challenges because of their proximity to critical structures such as the brainstem, cerebral arteries, veins, and cranial nerves. These structures are compressed or encased by the tumor as they grow, increasing the risk of unintended injury to these structures, which can potentially lead to severe neurological deficits.

View Article and Find Full Text PDF

: The accurate and early distinction of glioblastomas (GBMs) from single brain metastases (BMs) provides a window of opportunity for reframing treatment strategies enabling optimal and timely therapeutic interventions. We sought to leverage physiologically sensitive parameters derived from diffusion tensor imaging (DTI) and dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI) along with machine learning-based methods to distinguish GBMs from single BMs. : Patients with histopathology-confirmed GBMs ( = 62) and BMs ( = 26) and exhibiting contrast-enhancing regions (CERs) underwent 3T anatomical imaging, DTI and DSC-PWI prior to treatment.

View Article and Find Full Text PDF

Disruption of the glymphatic system plays a vital role in pathogenesis of neurodegeneration in normal tension glaucoma (NTG). We evaluated the impairment of glymphatic system of NTG patients by diffusion tensor image analysis along the perivascular space (DTI-ALPS), and explored the correlation between the ALPS index and dysfunction of visual cortices in resting state. DTI-ALPS was applied to 37 normal controls (NCs) and 37 NTG patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!