Aims: The standardized extract from the leaves of Ginkgo biloba (EGb761) is applied as a phyto-pharmacon in therapy of diverse cardiovascular disorders. However, the effects of EGb761 on bone-marrow mesenchymal stem cells (BMSCs) transplanted into the ischemic myocardium currently remain uncertain. In this study, the dosage-effects of EGb761 on BMSC survival in vitro and in vivo were investigated.
Main Methods: The ischemic microenvironment of rat BMSCs was simulated by hypoxia/serum deprivation (SD) and the rat myocardial infarction model was established. The rat BMSCs were cultured under hypoxia/SD or transplanted into the animal ischemic heart. The BMSC apoptosis was determined by FACS and TUNEL assay. Each apoptotic signal molecule's activity was assayed by immunoblot.
Key Findings: EGb761 showed a biphasic effect on the hypoxia/SD-induced BMSC apoptosis. Low concentration of EGb761 (10-100μg/ml) aggravated hypoxia/SD-induced apoptosis via Akt inactivation and an enhancement of caspase-9 and caspase-3 expressions, whereas high concentration of EGb761 (500-2000μg/ml) significantly prevented hypoxia/SD-induced BMSC apoptosis via the activated Akt and the inactivated caspase-9 and caspase-3. The animal study also indicated that the apoptotic index (AI) in the high concentration of EGb761 group was significantly lower than the low concentration of EGb761 group.
Significance: The biphasic effect of EGb761 is closely related to the PI3K-Akt and caspase-9 signaling pathways. The therapeutic concentration of EGb761 may be one of the vital factors determining the specific action of EGb761 on cell apoptosis. It is of significant clinical implication to investigate the mechanisms of the biphasic effect of EGb761.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2011.03.002 | DOI Listing |
Phytomedicine
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
Background: Ginkgo biloba leaf extract EGb 761® has shown clinical efficacy in patients with mild cognitive impairment and dementia. However, the pharmacological action of EGb 761® in Alzheimer's disease (AD) remains unclear and molecular mechanisms targeted in the brain are not completely understood.
Hypothesis/purpose: We aimed to investigate 1) the potential sex-dependent effects of oral administration of EGb 761® in 5xFAD mice, an AD mouse model, and 2) the underlying microglial subtype responsible for the observed anti-inflammatory effects in the brain.
Biomed Chromatogr
November 2024
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Planta Med
October 2024
Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt/Main, Germany.
Pharmacologic activity of proanthocyanidins in leaf extract has recently been reported. The objective of the present study was to screen proanthocyanidin contents in herbal medicinal products containing extracts. A recently published HPLC method for quantification of proanthocyanidins in leaf extract EGb 761 was adopted to also be suitable for finished herbal medicinal products.
View Article and Find Full Text PDFPhytochem Anal
August 2024
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Introduction: Previously reported preparation methods of Ginkgo biloba leaf extract (EGBL) have mainly focused on the enrichment of flavonoid glycosides (FG) and terpene trilactones (TT), which led to the underutilization of G. biloba leaves (GBL).
Objectives: To make full use of GBL, in this study, a comprehensive optimization strategy for preparing EGBL by macroporous resin column chromatography was proposed and applied to enrich FG, TT, and shikimic acid (SA) from GBL.
Biosens Bioelectron
May 2024
School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. Electronic address:
Staphylococcus aureus contamination in food supplements poses substantial challenges to public health and large-scale production but the sensitive detection in a timely manner remains a bottleneck. Drawing inspiration from the sea hedgehog, gold nanostars (AuNSs) were leveraged to design an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the determination of Staphylococcus aureus in food supplements. Besides the surface enhancement furnished by the AuNSs, Raman reporter molecules and specific aptamers sequentially self-assembled onto these AuNSs to construct the "three-in-one" SERS biosensor probe for label-based quantitation of Staphylococcus aureus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!