Aims: The objective of this study was to analyze the influence of obesity and insulin resistance on tumor development and, in turn, the effect of insulin sensitizing agents.
Main Methods: Male offspring of Wistar rats received monosodium glutamate (400mg/kg) (obese) or saline (control) from the second to sixth day after birth. Sixteen-week-old control and obese rats received 5×10(5) Walker-256 tumor cells, subcutaneously injected into the right flank. Some of the obese and control rats received concomitant treatment with metformin (300mg/kg) by gavage. At the 18th week, obesity was characterized. The percentage of rats that developed tumors, the tumor relative weight and the percentage of cachexia incidence were analyzed. The tumor tissue was evaluated histologically by means of hematoxylin and eosin staining.
Key Findings: Metformin did not correct the insulin resistance in obese rats. The tumor development was significantly higher in the obese group, whereas metformin treatment reduced it. After pathological analysis, we observed that the tumor tissues were similar in all groups except for adipocytes, which were found in greater quantity in the obese and metformin-treated obese groups. The area of tumor necrosis was higher in the group treated with metformin when compared with the untreated one.
Significance: Metformin reduced Walker-256 tumor development but not cachexia in obese rats. The reduction occurred independently of the correction of insulin resistance. Metformin increased the area of necrosis in tumor tissues, which may have contributed to the reduced tumor development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2011.03.005 | DOI Listing |
Oper Neurosurg (Hagerstown)
July 2024
Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada.
Background And Objectives: Subpial corticectomy involving complete lesion resection while preserving pial membranes and avoiding injury to adjacent normal tissues is an essential bimanual task necessary for neurosurgical trainees to master. We sought to develop an ex vivo calf brain corticectomy simulation model with continuous assessment of surgical instrument movement during the simulation. A case series study of skilled participants was performed to assess face and content validity to gain insights into the utility of this training platform, along with determining if skilled and less skilled participants had statistical differences in validity assessment.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Discov Oncol
January 2025
Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.
Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
Objective: Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Computational Clinical Imaging Group (CCIG), Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!