The conditional expression of alternative phenotypes underlies the production of almost all life history decisions and many dichotomous traits, including male alternative reproductive morphs and behavioral tactics. Changes in tactic fitness should lead to evolutionary shifts in developmental switch points that underlie tactic expression. We used experimental evolution to directly test this hypothesis by rearing ten generations of the male-dimorphic mite Rhizoglyphus echinopus in either simple or three-dimensionally complex habitats that differed in their effects on morph fitness. In R. echinopus, fighter males develop weapons used for killing rivals, whereas scrambler males do not. Populations evolving in complex 3D habitats, where fighters had reduced fitness, produced fewer fighters because the switch point for fighter development evolved to a larger critical body size. Both the reduced mobility of fighter males and the altered spatial distribution of potential mates and rivals in the complex habitat were implicated in the evolutionary divergence of switch point between the habitats. Our results demonstrate how abiotic factors like habitat complexity can have a profound effect on evolution through sexual selection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2011.02.032DOI Listing

Publication Analysis

Top Keywords

habitat complexity
8
experimental evolution
8
complex habitats
8
fighter males
8
switch point
8
complexity drives
4
drives experimental
4
evolution conditionally
4
conditionally expressed
4
expressed secondary
4

Similar Publications

Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.

View Article and Find Full Text PDF

Unlabelled: Marine protists form complex communities that are shaped by environmental and biological ecosystem properties, as well as ecological interactions between organisms. While all of these factors play a role in shaping protistan communities, the specific ways in which these properties and interactions influence protistan communities remain poorly understood. Fourteen years and 9 months of eukaryotic amplicon (18S-V4 rRNA gene) data collected monthly at the San Pedro Ocean Time-series (SPOT) station were used to evaluate the impacts that environmental and biological factors, and protist-protist interactions had on protistan community composition.

View Article and Find Full Text PDF

Interactions of human milk oligosaccharides with the immune system.

Front Immunol

January 2025

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways.

View Article and Find Full Text PDF

Globally, many complex issues, like the ageing population and health inequalities, require attention. People are experimenting to combat these issues in their local contexts through bigger or smaller networks; however, much of the knowledge about these initiatives remains localised and elitist and omits the voices and perspectives of citizens. This article identifies the characteristics of a more horizontal, emergent and plural epistemology to mobilize knowledge.

View Article and Find Full Text PDF

Nowadays, spaceborne LiDAR technology, particularly ICESat-2, has become a transformative tool in marine environmental research. Unlike traditional passive optical remote sensing methods, ICESat-2 offers detailed vertical structure mapping of oceanic optical properties. Despite the potential of ICESat-2 for observing the optical vertical structure, its application in the East China Sea with complex hydrological conditions and dynamic ecosystems remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!