DNA shape, genetic codes, and evolution.

Curr Opin Struct Biol

Genome Informatics Section, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Published: June 2011

Although the three-letter genetic code that maps nucleotide sequence to protein sequence is well known, there must exist other codes that are embedded in the human genome. Recent work points to sequence-dependent variation in DNA shape as one mechanism by which regulatory and other information could be encoded in DNA. Recent advances include the discovery of shape-dependent recognition of DNA that depends on minor groove width and electrostatics, the existence of overlapping codes in protein-coding regions of the genome, and evolutionary selection for compensatory changes in nucleotide composition that facilitate nucleosome occupancy. It is becoming clear that DNA shape is important to biological function, and therefore will be subject to evolutionary constraint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112471PMC
http://dx.doi.org/10.1016/j.sbi.2011.03.002DOI Listing

Publication Analysis

Top Keywords

dna shape
12
dna
5
shape genetic
4
genetic codes
4
codes evolution
4
evolution three-letter
4
three-letter genetic
4
genetic code
4
code maps
4
maps nucleotide
4

Similar Publications

Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus.

J Med Virol

January 2025

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.

View Article and Find Full Text PDF

Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.

View Article and Find Full Text PDF

Mitochondrial diseases, caused by mutations in either nuclear or mitochondrial DNA (mtDNA), currently have limited treatment options. For mtDNA mutations, reducing mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising therapeutic option, though current approaches face significant challenges. Previous research has shown that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, characterized by changes in DNA methylation, which does not occur or is less important when mitochondrial impairment is subtle.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!