Although the three-letter genetic code that maps nucleotide sequence to protein sequence is well known, there must exist other codes that are embedded in the human genome. Recent work points to sequence-dependent variation in DNA shape as one mechanism by which regulatory and other information could be encoded in DNA. Recent advances include the discovery of shape-dependent recognition of DNA that depends on minor groove width and electrostatics, the existence of overlapping codes in protein-coding regions of the genome, and evolutionary selection for compensatory changes in nucleotide composition that facilitate nucleosome occupancy. It is becoming clear that DNA shape is important to biological function, and therefore will be subject to evolutionary constraint.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112471 | PMC |
http://dx.doi.org/10.1016/j.sbi.2011.03.002 | DOI Listing |
J Med Virol
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.
View Article and Find Full Text PDFJ Helminthol
January 2025
Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, 117071, Moscow, Russia.
Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.
View Article and Find Full Text PDFMitochondrial diseases, caused by mutations in either nuclear or mitochondrial DNA (mtDNA), currently have limited treatment options. For mtDNA mutations, reducing mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising therapeutic option, though current approaches face significant challenges. Previous research has shown that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, characterized by changes in DNA methylation, which does not occur or is less important when mitochondrial impairment is subtle.
View Article and Find Full Text PDFHeliyon
January 2025
School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, India.
Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!