The objective of this study was to identify and optimize formulation and process variables affecting characteristic and scale-up of nanosuspension manufacturing process on bead mill considering industrial perspective. Formulation factors evaluated were ratio of polymer to drug and ratio of surfactant to drug, whereas process parameters were milling time and milling speed. Responses measured in this study include zeta potential and mean particle size d(90). The test revealed that ratio of polymer to drug and milling speed have significant effect on zeta potential whereas milling time and milling speed have significant effect on the particle size distribution of nanosuspension. The X-ray powder diffraction pattern of drug milled at high and low speed reveals no form conversion when compared with unmilled drug. The formulated nanosuspension has shown a faster dissolution profile (98.97% in 10 min), relative to that of raw glyburide (18.17% in 10 min), mainly due to the formation of nanosized particles. The ANOVA test revealed that there was no significant difference in the dissolution profiles of fresh and aged nanosuspension. These results indicate the suitability of formulation procedure for preparation of nanosized poorly water-soluble drug with significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2011.03.014DOI Listing

Publication Analysis

Top Keywords

milling speed
12
ratio polymer
8
polymer drug
8
milling time
8
time milling
8
zeta potential
8
particle size
8
test revealed
8
drug
7
milling
6

Similar Publications

The impact of grinding on particle size, thermal behaviour, and sintering ability of yttrium aluminate glass microspheres with eutectic composition (76.8 mol % AlO and 23.2 mol % YO) was studied.

View Article and Find Full Text PDF

In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.

View Article and Find Full Text PDF

Energy drinks are a commonly consumed beverage, and studies suggest a possible performance-enhancing effect. A Google Scholar search using the keywords "energy drinks" and "exercise" yields numerous results, underscoring the voluminous research on this topic. However, there are questions regarding the effectiveness and safety of energy drinks.

View Article and Find Full Text PDF

Influence of Machining Parameters on the Surface Roughness and Tool Wear During Slot Milling of a Polyurethane Block.

Materials (Basel)

January 2025

Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland.

The aim of the work was to investigate the influence of the machining parameters on the surface roughness and tool wear during slot milling of a polyurethane block (PUB). In the experiment, the influence of the cutting speed, the feed per tooth and the depth of cut on the roughness and of the milling slot surface and wear of the end mill was analyzed. A three-axis CNC milling machine Emco Concept Mill 55 was used to perform the study.

View Article and Find Full Text PDF

A Method for Determining the Minimum Thickness of the Cut Layer in Precision Milling.

Materials (Basel)

January 2025

Department of Machine Design and Manufacturing Engineering, Kielce University of Technology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.

The minimum cutting thickness is a key value in machining processes, as below this value the material will only undergo elastic and plastic deformation without chip removal. Existing measurement methods require time-consuming preparation and complicated procedures. This work focuses on the development of a new, simplified method for determining the minimum cutting thickness (h) using a contact profilometer that can be used in industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!