Limited hippocampal neurogenesis in SAMP8 mouse model of Alzheimer's disease.

Brain Res

Department of Neurology, The First Clinical College, Harbin Medical University, 23rd Youzheng Street, Nangang District, Harbin, Heilongjiang Province 15001, China.

Published: May 2011

Increasing adult neurogenesis in the hippocampal formation (HF) has been proposed as a potential foundation for neuronal repair in Alzheimer's disease (AD), but the evidence remains controversial. We used P8 strain of senescence-accelerated mice (SAMP8) as a model of AD to investigate changes in adult neurogenesis. We examined new proliferating cells and their survival in the dentate gyrus (DG) of the HF using 5-bromodeoxyuridine (BrdU) labeling and investigated newborn cell development and differentiation with a combination of phenotype markers. In 5-month-old SAMP8, the number of BrdU(+) cells in the DG was significantly increased relative to controls, in accordance with the rising numbers of doublecortin-positive (DCX(+)) immature neurons. Some of these BrdU(+) cells migrated to cornu ammonis 1 (CA1), possibly related to the compensation of neuronal loss. However, the capacity of neurogenesis to compensate neuronal loss during neurodegeneration was limited. First, only half of the BrdU(+) cells survived 4weeks after mitosis, and even fewer developed into neuron-specific nuclear protein positive (NeuN(+)) mature neurons. Second, the number of BrdU(+) cells and DCX(+) cells was decreased in 10-month-old SAMP8, which exhibited progressive neurodegeneration. In addition, the results provided insight into astrocytes as a crucial component of the neurogenic niche. The number of newborn astrocytes and expression of glial fibrillary acidic protein (GFAP) were diminished in the DG of SAMP8 animals, possibly explaining the insufficient neurogenesis. Thus, stimulating limited neurogenesis in AD by improving the neurogenic niche may have therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2011.03.039DOI Listing

Publication Analysis

Top Keywords

brdu+ cells
16
alzheimer's disease
8
adult neurogenesis
8
number brdu+
8
neuronal loss
8
neurogenic niche
8
neurogenesis
6
cells
6
samp8
5
limited hippocampal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!