We designed and built a novel, miniature gas chromatograph (mGC) to use exhaled breath to estimate blood ethanol concentrations that may offer GC quality sensitivity and specificity, but with portability, reduced size, and decreased cost. We hypothesized that the mGC would accurately estimate the serum ethanol concentration using exhaled breath. Human subjects (n = 8) were dosed with ethanol employing the Widmark criteria, targeting a blood concentration of 0.08 g/dL. Serum and breath samples were collected concurrently over an hour. Ethanol concentrations in serum were measured using a CLIA-approved laboratory. Ethanol concentrations in conventional breath were assayed using a calibrated mGC or Intoxilyzer 400PA. Data were analyzed using Bland-Altman analysis using serum concentrations as a "gold standard". For the mGC, the regression line (correlation coefficient), bias, and 95% limits of agreement were y = 1.013x - 0.009 (r = 0.91), -0.008 g/dL, and -0.031 to 0.016 g/dL, respectively, for 30 specimens. For the Intoxilyzer 400PA, the regression line (correlation coefficient), bias, and 95% limits of agreement were y = 0.599x + 0.008 (r = 0.86), -0.024 g/dL, and -0.049 to 0.002 g/dL, respectively, for 71 specimens with a large magnitude effect. We concluded that the mGC, using exhaled breath, performed well to estimate the serum ethanol concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152827PMC
http://dx.doi.org/10.1093/anatox/35.3.134DOI Listing

Publication Analysis

Top Keywords

ethanol concentrations
16
exhaled breath
12
miniature gas
8
gas chromatograph
8
mgc exhaled
8
estimate serum
8
serum ethanol
8
intoxilyzer 400pa
8
regression correlation
8
correlation coefficient
8

Similar Publications

The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.

View Article and Find Full Text PDF

The walnut tree as a source of progesterone for reproductive control in goats.

Animal

December 2024

Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France.

Intravaginal sponges impregnated with the progesterone (P4) analogue fluorogestone acetate (FGA) induce synchronous oestrous behaviour and normal ovulatory cycle in goats. To explore alternatives using natural P4 from plants, we developed a method of ethanolic extraction and a specific enzyme immunoassay (EIA) to measure P4 in the different parts of the walnut tree Juglans regia. We found a very high concentration of P4, specifically in the leaves of the three most common French varieties (∼100 mg/kg of DM) but not in flowers, fruits, septa, husk, oil or cake.

View Article and Find Full Text PDF

Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [C]-raclopride binding potential (BP) in the ventral striatum (Cohen's d = -0.

View Article and Find Full Text PDF

Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous CuO-SnO Nanospheres.

Nanomaterials (Basel)

December 2024

Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.

View Article and Find Full Text PDF

Sargahydroquinoic acid (SHQA), a bioactive compound found in certain species, exhibits significant health benefits. This study optimized the extraction of SHQA from using response surface methodology (RSM) and evaluated its antioxidant effects through in vitro and in vivo assays. A Box-Behnken design (BBD) was effectively employed to investigate the effects of incubation temperature, time, and ethanol concentration on SHQA yield, achieving a high coefficient of determination (R = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!