Background: Sigma factors and the alarmone ppGpp control the allocation of RNA polymerase to promoters under stressful conditions. Both ppGpp and the sigma factor σS (RpoS) are potentially subject to variability across the species Escherichia coli. To find out the extent of strain variation we measured the level of RpoS and ppGpp using 31 E. coli strains from the ECOR collection and one reference K-12 strain.

Results: Nine ECORs had highly deleterious mutations in rpoS, 12 had RpoS protein up to 7-fold above that of the reference strain MG1655 and the remainder had comparable or lower levels. Strain variation was also evident in ppGpp accumulation under carbon starvation and spoT mutations were present in several low-ppGpp strains. Three relationships between RpoS and ppGpp levels were found: isolates with zero RpoS but various ppGpp levels, strains where RpoS levels were proportional to ppGpp and a third unexpected class in which RpoS was present but not proportional to ppGpp concentration. High-RpoS and high-ppGpp strains accumulated rpoS mutations under nutrient limitation, providing a source of polymorphisms.

Conclusions: The ppGpp and σS variance means that the expression of genes involved in translation, stress and other traits affected by ppGpp and/or RpoS are likely to be strain-specific and suggest that influential components of regulatory networks are frequently reset by microevolution. Different strains of E. coli have different relationships between ppGpp and RpoS levels and only some exhibit a proportionality between increasing ppGpp and RpoS levels as demonstrated for E. coli K-12.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074542PMC
http://dx.doi.org/10.1186/1471-2180-11-62DOI Listing

Publication Analysis

Top Keywords

ppgpp
13
rpos
13
ppgpp rpos
12
rpos ppgpp
12
rpos levels
12
rpos strain-specific
8
escherichia coli
8
strain variation
8
ppgpp levels
8
proportional ppgpp
8

Similar Publications

To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in . The resulting recombinant plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen.

View Article and Find Full Text PDF

(P)ppGpp synthetase Rel facilitates cellulose formation of biofilm by regulating glycosyltransferase in Brucella abortus.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:

Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.

View Article and Find Full Text PDF

Persisters describe phenotypically switched cells refractory to antibiotic killing in a genetically susceptible population, while preserving the ability to resume growth when antibiotics are discontinued1,2. Since its proposal 70 years ago, great strides were made to build the framework regarding persistence, including defining triggered, spontaneous and antibiotic-induced persisters. However, challenges remain in characterizing the molecular determinants underlying the phenotypic switch into persistence3.

View Article and Find Full Text PDF

Unlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.

View Article and Find Full Text PDF

Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!