AI Article Synopsis

  • Blastocystis is a common eukaryotic parasite affecting humans and animals, linked to various gastrointestinal and other disorders, but no specific subtype has been proven to cause disease.
  • The genome of a subtype 7 isolate has been sequenced, revealing it to be the smallest known stramenopile genome with unique structural features and potential effector proteins for intestinal adaptation, possibly acquired through horizontal gene transfer.
  • The study offers valuable insights into the genetics of this parasite and identifies candidate genes to explore how Blastocystis interacts with and affects its host.

Article Abstract

Background: Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease.

Results: Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system.

Conclusions: This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129679PMC
http://dx.doi.org/10.1186/gb-2011-12-3-r29DOI Listing

Publication Analysis

Top Keywords

genome sequence
8
genome
5
stramenopile
4
sequence stramenopile
4
blastocystis
4
stramenopile blastocystis
4
blastocystis human
4
human anaerobic
4
parasite
4
anaerobic parasite
4

Similar Publications

This study explores the relationship between 25-hydroxyvitamin D/calcium/alkaline phosphatase (ALP) levels and kidney stone development via cross-sectional and Mendelian randomization (MR) analyses. We used data from the National Health and Nutrition Examination Survey (NHANES) 2013 to 2018 to explore the associations of 25(OH)D metabolite, calcium, and ALP levels with kidney stone development, LDSC analysis to determine the associations between their genetically predicted levels and kidney stone development, and MR analysis to determine the causality of those relationship via genome-wide association studies (GWASs). The cross-sectional study revealed a relationship between ALP levels and kidney stone development (Model 1: OR = 1.

View Article and Find Full Text PDF

While recent studies suggested a potential causal link between type 1 diabetes mellitus (T1DM) but not type 2 diabetes mellitus (T2DM) and idiopathic pulmonary fibrosis (IPF), the involved mechanism remains unclear. Here, using a Mendelian randomization (MR) approach, we verified the causal relationship between the two types of diabetes mellitus and IPF and investigated the possible role of inflammation in the association between diabetes mellitus and IPF. Based on genome-wide association study (GWAS) summary data of T1DM, T2DM, and IPF, the univariable MR, multivariable MR (MVMR), and mediation MR were successively used to analyze the causal relationship.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common cancers worldwide and inflammation is believed to play an important role in CRC. In this study, we comprehensively analyzed the causal association between 91 circulating inflammatory cytokines and the risk of CRC using Mendelian randomization (MR). Based on genome-wide association study summary statistics, we examined the causal effects of 91 circulating inflammatory cytokines on CRC.

View Article and Find Full Text PDF

Associations of cathepsins with pulmonary arterial hypertension mediated by circulating metabolites: A Mendelian randomization study.

Medicine (Baltimore)

January 2025

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

The correlation between cathepsins and pulmonary arterial hypertension (PAH) is well-established, but the causative link between them remains uncertain. This study aimed to explore the causal role of circulating metabolites mediating cathepsins in PAH using Mendelian randomization (MR). A 2-sample 2-step MR method was used to identify causal relationship between cathepsins and PAH; causal relationship between circulating metabolites and PAH; and mediated effects of these circulating metabolites.

View Article and Find Full Text PDF

In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!