Objective: We recently demonstrated that the formation of CLSs in vitro, which are thought to be a reconstitution of VM, is controlled by VEGFA. CLS formation also requires the extracellular matrix signals, presumably transduced by integrins. Both pathways are affected by Ca(2+). Therefore, we directly tested the roles of Ca(2+) and integrin in melanoma VM.
Methods: The investigation was performed by immunocytochemical, histochemical, and 3D co-culture assays. We have also used an in vivo animal model.
Results: The extracellular and intracellular Ca(2+) chelators, EGTA and BAPTA-AM, prevented CLS formation on Matrigel, caused actin rearrangement, and completely destroyed the preformed CLS. Addition of colcemid or cytochalasin D prevented the CLS formation and destroyed the preformed CLS network. Herein, we also show that blocking antibodies to ανβ3 and ανβ5 integrins disrupted the CLS network. Control blocking antibody to β1 integrin had no effect. In vivo experiments indicated that Ca(2+) chelation dramatically reduced the signs of VM in melanoma tumors grafted in mice.
Conclusions: Our results indicate that the formation of CLS is tightly regulated by extracellular and intracellular Ca(2+) levels; ανβ3 and ανβ5 integrins are primarily responsible for CLS formation, whereas β1 integrin does not participate in CLS formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1549-8719.2011.00102.x | DOI Listing |
Curr Rheumatol Rep
December 2024
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-937, Boston, MA, 02215, USA.
Purpose Of Review: Kidney injury due to lupus nephritis (LN) is a severe and sometimes life-threatening sequela of systemic lupus erythematosus. Autoimmune injury to podocytes has been increasingly demonstrated to be a key driver of LN-related kidney injury because these cells play key roles in glomerular filtration barrier homeostasis. Irreparable podocyte injury impairs these processes and can lead to proteinuria, which is an indicator of poor prognosis in LN.
View Article and Find Full Text PDFCells
November 2024
Division of Hematology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Lymphoma growth, progression, and dissemination require tumor cell interaction with supporting vessels and are facilitated through tumor-promoted angiogenesis, lymphangiogenesis, and/or lymphoma vessel co-option. Vessel co-option has been shown to be responsible for tumor initiation, metastasis, and resistance to anti-angiogenic treatment but is largely uncharacterized in the setting of lymphoma. We developed an in vitro model to study lymphoma-vessel interactions and found that mantle cell lymphoma (MCL) cells co-cultured on Matrigel with human umbilical vein (HUVEC) or human lymphatic (HLEC) endothelial cells migrate to and anneal with newly formed capillary-like (CLS) or lymphatic-like (LLS) structures, consistent with lymphoma-vessel co-option.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram ,Kerala 695 019, India.
Cytochrome c () released from the mitochondrion acts as a trigger for the onset of apoptosis in which a double bond of cardiolipin () is oxidized upon interaction with . To understand the interaction dynamics of with the double bond of , having acyl chains with a systematic increase in the number of double bonds, 0 (), 1 (), and 2 (), were complexed with , and their excited-state dynamics were studied using femtosecond time-resolved pump-probe spectroscopy. Steady-state and femtosecond transient absorption spectra revealed a systematic increase in the partial unfolding of with an increase in double bonds in , as observed by the enhanced fluorescence intensity and lifetime of tryptophan due to variations in the resonance energy transfer and extended global conformational relaxation time constants.
View Article and Find Full Text PDFFood Chem
February 2025
School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
For the first time, curdlan (CL) was reported to have emulsifying property. Based on its emulsifying property and gelling property, the CL-based simple-structured emulsion gels were prepared. Among different CLs, CL-4 showed relatively good emulsifying property and its based emulsion showed the best stability, which might be mainly due to its highest hydrophobic property.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Cardiac atrophy is one of the critical characteristics of cancer cachexia though its mechanisms had not been fully clarified. In the present study, to study the mechanisms of cardiac atrophy in cancer cachexia and search for possible drug targets, cancer cachexia mice bearing C26 colon tumor cells and cultured H9c2 cardiomyocytes induced with simulated cancer cachexia injuries were used as in vivo and in vitro model, respectively. Results of both spatial metabolomics and LC-MS non-targeted metabolomics analysis of heart tissues suggested the disturbance of glycerophospholipid and fatty acid metabolism in the cancer cachexia hearts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!