Background: The mammalian target of rapamycin (mTOR) kinase controls cell growth, proliferation, and metabolism through 2 distinct multiprotein complexes, mTORC1 and mTORC2. We reported that alcohol (EtOH) inhibits mTORC1 activity and protein synthesis in C2C12 myoblasts. However, the role that mTORC2 plays in this process has not been elucidated. In this study, we investigated whether mTORC2 functions as part of a feedback regulator in response to EtOH, acting to maintain the balance between the functions of Akt, mTORC2, and mTORC1.
Methods: C2C12 myoblasts were incubated with EtOH for 18 to 24 hours. Levels of various mTORC2 proteins and mRNA were assessed by immunoblotting and real-time PCR, respectively, while protein-protein interactions were determined by immunoprecipitation and immunoblotting. An in vitro mTORC2 kinase activity assay was performed using Akt as a substrate. The rate of protein synthesis was determined by (35) S-methionine/cysteine incorporation into cellular protein.
Results: EtOH (100 mM) increased the protein and mRNA levels of the mTORC2 components rictor, mSin1, proline-rich repeat protein 5, and Deptor. There was also an increased association of these proteins with mTOR. EtOH increased the in vitro kinase activity of mTORC2, and this was correlated with decreased binding of rictor with 14-3-3 and Deptor. Reduced rictor phosphorylation at T1135 by EtOH was most likely due to decreased S6K1 activity. Knockdown of rictor elevated mTORC1 activity, as indicated by increased S6K1 phosphorylation and protein synthesis. Likewise, there were decreased amounts and/or phosphorylation levels of various mTORC1 and mTORC2 components including raptor, proline-rich Akt substrate 40 kDa, mSin1, Deptor, and GβL. Activated PP2A was associated with decreased Akt and eukaryotic elongation factor 2 phosphorylation. Collectively, our results provide evidence of a homeostatic balance between the 2 mTOR complexes following EtOH treatments in myoblasts.
Conclusions: EtOH increased the activity of mTORC2 by elevating levels of various components and their interaction with mTOR. Decreased rictor phosphorylation at T1135 acts as mTORC1-dependent feedback mechanisms, functioning in addition to the insulin receptor substrate-I/PI3K signaling pathway to regulate protein synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503252 | PMC |
http://dx.doi.org/10.1111/j.1530-0277.2011.01480.x | DOI Listing |
Eur Arch Paediatr Dent
January 2025
Qatar University Health, College of Dental Medicine, Qatar University, Doha, Qatar.
Purpose: To review the current evidence on the association between salivary protein profile and dental caries in children during mixed dentition stage.
Methods: This systematic review followed the PRISMA 2020 guidelines. Searches were run in PubMed, Scopus and Embase along with gray literature.
Mol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFChembiochem
January 2025
Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!