Neuronal intrinsic mechanisms of axon regeneration.

Annu Rev Neurosci

FM Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: October 2011

Failure of axon regeneration after central nervous system (CNS) injuries results in permanent functional deficits. Numerous studies in the past suggested that blocking extracellular inhibitory influences alone is insufficient to allow the majority of injured axons to regenerate, pointing to the importance of revisiting the hypothesis that diminished intrinsic regenerative ability critically underlies regeneration failure. Recent studies in different species and using different injury models have started to reveal important cellular and molecular mechanisms within neurons that govern axon regeneration. This review summarizes these observations and discusses possible strategies for stimulating axon regeneration and perhaps functional recovery after CNS injury.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-neuro-061010-113723DOI Listing

Publication Analysis

Top Keywords

axon regeneration
16
regeneration failure
8
regeneration
5
neuronal intrinsic
4
intrinsic mechanisms
4
axon
4
mechanisms axon
4
failure axon
4
regeneration central
4
central nervous
4

Similar Publications

Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.

View Article and Find Full Text PDF

The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).

View Article and Find Full Text PDF

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Front Cell Dev Biol

January 2025

Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!