A series of mononuclear nickel(II) bis(diphosphine) complexes [Ni(P(Ph)(2)N(C6H4X)(2))(2)](BF(4))(2) (P(Ph)(2)N(C6H4X)(2) = 1,5-di(para-X-phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; X = OMe, Me, CH(2)P(O)(OEt)(2), Br, and CF(3)) have been synthesized and characterized. X-ray diffraction studies reveal that [Ni(P(Ph)(2)N(C6H4Me)(2))(2)](BF(4))(2) and [Ni(P(Ph)(2)N(C6H4OMe)(2))(2)](BF(4))(2) are tetracoordinate with distorted square planar geometries. The Ni(II/I) and Ni(I/0) redox couples of each complex are electrochemically reversible in acetonitrile with potentials that are increasingly cathodic as the electron-donating character of X is increased. Each of these complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple. The catalytic rates generally increase as the electron-donating character of X is decreased, and this electronic effect results in the favorable but unusual situation of obtaining higher catalytic rates as overpotentials are decreased. Catalytic studies using acids with a range of pK(a) values reveal that turnover frequencies do not correlate with substrate acid pK(a) values but are highly dependent on the acid structure, with this effect being related to substrate size. Addition of water is shown to dramatically increase catalytic rates for all catalysts. With [Ni(P(Ph)(2)N(C6H4CH2P(O)(OEt)2)(2))(2)](BF(4))(2) using [(DMF)H](+)OTf(-) as the acid and with added water, a turnover frequency of 1850 s(-1) was obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja109755fDOI Listing

Publication Analysis

Top Keywords

catalytic rates
16
electron-donating character
8
pka values
8
catalytic
5
[nipph2nc6h4x22]2+ complexes
4
complexes electrocatalysts
4
electrocatalysts production
4
production substituents
4
substituents acids
4
acids water
4

Similar Publications

Identification of the arachidonic acid 5-lipoxygenase and its function in the immunity of Apostichopus japonicus.

Fish Shellfish Immunol

December 2024

Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:

A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

A label-free DNAzyme-Mediated biosensor for fluorescent detection of Lead (II) ion.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Lead ion (Pb) is a common environmental contaminant, extremely toxic, persistent, and easily adsorbed, concentrated, and enriched by agricultural products. Ingestion of this ion can result in health problems for humans, including neurological disorders, heart disease, brain damage, and mental deficiency. In this research, a sensitive fluorescent biosensing method for detecting Pb was developed using DNAzyme as the target recognition element and SYBR Green (SG) fluorescent dye as the signal indicator.

View Article and Find Full Text PDF

Induce (101) plane exposure boosting photocatalytic CO reduction in aerobic environment for NH-MIL-125.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China. Electronic address:

NH-MIL-125 with abundant porosity and specific interactions with CO molecules, has been demonstrate great potential in the field of photocatalytic CO reduction. However, conventional NH-MIL-125 and their composites much lower CO photoreduction efficiency in aerobic environments because of the O competition. To circumvent the issue, this study modifies NH-MIL-125 through crystal facet engineering to enhance its selective CO adsorption and photocatalytic efficiency in the environment of impurity CO.

View Article and Find Full Text PDF

Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu.

Angew Chem Int Ed Engl

December 2024

University of Wisconsin-Madison, Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, UNITED STATES OF AMERICA.

In this study, we employed EC-MS to elucidate the role of halide anions in electrochemical CO2 and CO reduction. We found that the undesired hydrogen evolution reaction (HER) was significantly suppressed by the anion used. Specifically, the rates of H2 production decreased in the order KF > KCl > KI, meaning that I- most strongly suppressed HER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!