AI Article Synopsis

Article Abstract

The stimulation by cholera toxin of adenylate cyclase in Chinese hamster ovarian cells could be inhibited by various ligands. The latter have been shown to contain the structural oligosaccharide entities required for binding to cholera toxin, established as Galbeta1 leads to 3GalNAcbeta1 leads to 4Gal3 comes from 2alphaNeuAc. The different inhibitory potency of the ligands thereby correlates with the size of the aggregates formed with the toxin, which in turn depends on the valency of the ligands. The conclusion is drawn from a comparison of the interaction of cholera toxin and its B-protomer with ganglioside II3NeuAc-GgOse4-Cer, the newly synthesized bis-(monosialo-gangliotetraityl)amine and monosialogangliotetraose. In a double diffusion test cholera toxin B-protomer precipitated with the ganglioside II3 NeuAcGgOSE4-Cer and the divalent ligand bis(monosialo-gangliotetraityl)amine, suggesting the formation of high molecular weight aggregates, whereas no precipitation was observed with the monovalent monosialo-gangliotetraose. By ultracentrifugation analysis, aggregate formation of the cholera toxin B-protomer could be demonstrated with the ganglioside II3 NeuAc-GgOse4-Cer and bis(monosialo-gangliotetraityl)amine at a concentration at which the ganglioside was assumed to be monodisperse. Ganglioside/cholera toxin B-protomer complexes sediment faster than those of the toxin and bis(monosialo-gangliotetraityl)amine, suggesting higher aggregation of cholera toxin B-protomer with the former. On the other hand, no sedimentation with monosialo-gangliotetraose was observed. By equilibrium displacement dialysis, however, a comparable high affinity of binding to cholera toxin B-protomer of both the mono- and divalent oligosaccharides was demonstrated. Furthermore, values for the maximal concentration of the bound ligand from these binding experiments with cholera toxin B-protomer established molar ratios of ligand to protein of 4 to 1 and 2 to 1 for monosialo-gangliotetraose and bis(monosialo-gangliotetraityl)amine, respectively. From the results it is concluded that the lipophilic moiety of the ganglioside is not directly involved in the binding process to the toxin protein but leads to an oligovalency of this ligand, due to formation of micellar or submicellar structures.

Download full-text PDF

Source
http://dx.doi.org/10.1515/bchm2.1978.359.2.1277DOI Listing

Publication Analysis

Top Keywords

cholera toxin
36
toxin b-protomer
28
toxin
13
cholera
9
comparison interaction
8
aggregate formation
8
binding cholera
8
ganglioside ii3
8
bismonosialo-gangliotetraitylamine suggesting
8
b-protomer
7

Similar Publications

The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.

View Article and Find Full Text PDF

Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Objectives: The objective of this study is to investigate lipopolysaccharid-binding protein (LBP), zonulin and calprotectin as markers of bacterial translocation, disturbed gut barrier and intestinal inflammation in patients with radiographic axial spondyloarthritis (r-axSpA) during tumour necrosis factor inhibitor (TNFi) therapy and to analyze the association between disease activity, response to treatment and biomarker levels.

Methods: Patients with active r-axSpA of the German Spondyloarthritis Inception Cohort starting TNFi were compared with controls with chronic back pain. Serum levels of LBP, zonulin and calprotectin were measured at baseline and after 1 year of TNFi therapy.

View Article and Find Full Text PDF

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!