We present the fluorescence excitation and dispersed emission spectra of the parent compound of the boron dipyrromethene (BODIPY) dye class measured in a supersonic beam and isolated in superfluid helium nanodroplets. The gas-phase spectrum of the isolated molecules displays many low-frequency transitions that are assigned to a symmetry-breaking mode with a strongly nonharmonic potential, presumably the out-of-plane wagging mode of the BF(2) group. The data are in good agreement with transition energies and Franck-Condon factors calculated for a double minimum potential in the upper electronic state. The corresponding transitions do not appear in the helium droplet. This is explained with the quasi-rigid first layer of helium atoms attached to the dopant molecule by van der Waals forces. The spectral characteristics are those of a cyanine dye rather than that of an aromatic chromophore.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201001076 | DOI Listing |
Sci Rep
December 2024
SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Criegee intermediates (CIs) play an important role in atmospheric chemistry as a transient source of the OH radical through their formation by the ozonolysis of unsaturated organic compounds. Here, we report thermally initiated formation of the smallest CI (CHOO) in the oxidation of ethane (CHCH) that may be relevant to combustion and flames. The SiO/SiC oxidation microreactor is heated to 1800 K and has a short residence time of ∼100 μs.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China.
SiO is a widespread molecule found in interstellar space, and its dissociation requires a substantial input of energy due to its high bond energy of 8.34 eV. The present study initially demonstrated across a broad range of ultraviolet (UV) wavelengths (243-288 nm) the one-photon and two-photon dissociation of SiO molecules, which were generated from the laser ablation of a Si rod colliding with an oxygen molecular beam.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Republic of Korea.
J Phys Chem A
October 2024
Department of Chemistry, IIT Hyderabad, Sangareddy 502284, Telangana, India.
The article presents a comprehensive laser spectroscopic characterization of a nitrogen-rich indole derivative, namely, 2,6-diazaindole (26DAI), in the gas phase. A supersonic jet-cooled molecular beam of 26DAI was characterized using two-color resonant two-photon ionization (2C-R2PI) and laser-induced fluorescence spectroscopy (LIF) to investigate the electronic excitation. The S ← S origin transition was obtained at 33915 cm, which was red-shifted from that of one (indole) and two (7-azaindole) nitrogen-containing indole derivatives by 1317 and 713 cm, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!