p38 Mitogen-activated protein kinase (MAPK) plays a critical role in the activation of inflammatory cells. We investigated the anti-inflammatory effects of a p38α-selective MAPK inhibitor (SD-282) in a mouse transgenic (CC10:IL-13) asthma model. The CC-10-driven over-expression of IL-13 in the mouse lung/airway has been shown to result in a remarkable phenotype recatitulating many features of asthma and characterized by eosinophilic and mononuclear inflammation, with airway epithelial cell hypertrophy, mucus cell metaplasia, the hyperproduction of neutral and acidic mucus, the deposition of Charcot-Leyden-like crystal, and airway sub-epitheilial fibrosis. Here we show how activated p38 MAPK can be observed in the lungs at the onset of asthma ie, around 8 weeks of age in both female and male mice. We also show that administration of a p38α MAPK selective inhibitor, SD-282 at 30 or 90 mg/kg, twice a day for a period of four weeks beginning at the onset of asthma, significantly reduced the inflammation (p < 0.001); hyperplasia of airway epithelium (p < 0.05); goblet cell metaplasia and mucus hypersecretion (p < 0.001) and reduced lung remodeling and fibrosis (p < 0.01), alleviating the severity of lung damage as measured by a composite score (p < 0.05). Furthermore, SD-282 significantly reduced activated p38 MAPK in the lymphocytes and epithelial cells (p < 0.001). Simultaneously, identical studies were conducted with an anti-fibrotic TGFβR1 kinase inhibitor (SD-208) which demonstrated anti-fibrotic but not anti-inflammatory properties. These findings suggest that the p38α-selective MAPK inhibitor may have dual therapeutic potential in attenuating both the inflammatory component and the fibrotic component of asthma and other Th2-polarized inflammatory lung diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121334PMC
http://dx.doi.org/10.2147/jaa.s4199DOI Listing

Publication Analysis

Top Keywords

mitogen-activated protein
8
protein kinase
8
kinase inhibitor
8
p38α-selective mapk
8
mapk inhibitor
8
inhibitor sd-282
8
cell metaplasia
8
activated p38
8
p38 mapk
8
onset asthma
8

Similar Publications

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

RNA virus-induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as "dysregulated immunity" is caused by viral single-stranded RNA (ssRNA)- and double-stranded-RNA (dsRNA)-mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined.

View Article and Find Full Text PDF

Inflammatory Stimulation Upregulates the Receptor Transporter Protein 4 (RTP4) in SIM-A9 Microglial Cells.

Int J Mol Sci

December 2024

Department of Pharmacology and Therapeutic Innovation, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.

The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role of RTP4 in response to inflammatory stress in the central nervous system has not yet been fully understood.

View Article and Find Full Text PDF

Pulsed Electromagnetic Fields (PEMF) are widely used, with excellent clinical outcomes. However, their mechanism of action has not yet been completely understood. The purpose of this review is to describe current observations on the mechanisms of PEMF, together with its clinical efficacy.

View Article and Find Full Text PDF

A series of target 4-substituted-5-(2-(pyridine-2-ylamino)ethyl)-2,4-dihydro-3-1,2,4-triazole-3-thiones and their chloro analogs - were synthesized in a reaction of the selected aldehydes with the corresponding 4-amino-1,2,4-triazole-3-thiones and , which were obtained from 3-(pyridin-2-ylamino)propanoic acid () or 3-((5-chloropyridin-2-yl)amino)propanoic acid (), respectively, with thioacetohydrazide. The antibacterial and antifungal activities of the synthesized hydrazones were screened against the bacteria , , and and the fungi and by agar diffusion and serial dilution methods. 4-Amino-5-(2-((5-chloropyridin-2-yl)amino)ethyl)-2,4-dihydro-3-1,2,4-triazole-3-thione () and 4-(benzylideneamino)-5-(2-(pyridin-2-ylamino)ethyl)-2,4-dihydro-3-1,2,4-triazole-3-thione () were identified as exceptionally active (MIC 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!