Background: Rhythmic auditory stimulation (RAS) can influence movement during straight line walking and direction transition in individuals with Parkinson disease (PD).

Objective: The authors studied whether multidirectional step training with RAS would generalize to functional gait conditions used in daily activities and balance.

Methods: In a matched-pairs design, 8 patients practiced externally paced (EP) stepping (RAS group), and 8 patients practiced internally paced (IP) stepping (no RAS group) for 6 weeks. Participants were evaluated on the first and last days of practice, and 1 week, 4 weeks, and 8 weeks after practice termination. Evaluations included a primary measurement--the Dynamic Gait Index (DGI)--and secondary measurements--the Unified Parkinson's Disease Rating Scale (UPDRS), Tinetti-gait and balance tests, Timed-Up-and-Go (TUG), and Freezing of Gait Questionnaire (FOGQ).

Results: The RAS group significantly improved performance on the DGI and several secondary measures, and they maintained improvements for the DGI, Tinetti, FOGQ, and balance and gait items of the UPDRS above pretraining values at least 4 weeks after practice termination. The no RAS group revealed several improvements with training but could not maintain these improvements for as long as the other group.

Conclusions: Individuals with PD can generalize motor improvements achieved during multidirectional step training to contexts of functional gait and balance. Training with RAS is advantageous for enhancing functional gait improvements and the maintenance of functional gait and balance improvements over 8 weeks.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1545968311401627DOI Listing

Publication Analysis

Top Keywords

functional gait
16
ras group
16
step training
12
rhythmic auditory
8
auditory stimulation
8
multidirectional step
8
training ras
8
patients practiced
8
paced stepping
8
stepping ras
8

Similar Publications

Reconstructing dinosaur locomotion.

Biol Lett

January 2025

School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.

Dinosaur locomotor biomechanics are of major interest. Locomotion of an animal affects many, if not most, aspects of life reconstruction, including behaviour, performance, ecology and appearance. Yet locomotion is one aspect of non-avian dinosaurs that we cannot directly observe.

View Article and Find Full Text PDF

Background: Walking speed is a measure of functional mobility that is relatively easy to quantify. In people with lower limb amputation, reduced walking speed has been linked with specific atypical spatiotemporal gait parameters. However, the influence of atypical spatiotemporal gait parameters on the walking speed of people with unilateral transtibial amputation (TTA) and transfemoral amputation (TFA) remains unclear.

View Article and Find Full Text PDF

A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity.

J Transl Med

January 2025

Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.

Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.

Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.

View Article and Find Full Text PDF

Foot trajectory as a key factor for diverse gait patterns in quadruped robot locomotion.

Sci Rep

January 2025

Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.

Four-legged robots are becoming increasingly pivotal in navigating challenging environments, such as construction sites and disaster zones. While substantial progress in robotic mobility has been achieved using reinforcement learning techniques, quadruped animals exhibit superior agility by employing fundamentally different strategies. Bio-inspired controllers have been developed to replicate and understand biological locomotion strategies.

View Article and Find Full Text PDF

The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!