A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell-surface nucleolin is sequestered into EPEC microcolonies and may play a role during infection. | LitMetric

Cell-surface nucleolin is sequestered into EPEC microcolonies and may play a role during infection.

Microbiology (Reading)

Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.

Published: June 2011

Nucleolin is a prominent nucleolar protein that is mobilized into the cytoplasm during infection by enteropathogenic Escherichia coli (EPEC). Nucleolin also exists at low levels at the cell surface of eukaryotic cells and here we show that upon infection of an intestinal cell model, EPEC recruits and subsequently sequesters cell-surface EGFP-nucleolin into extracellularly located bacterial microcolonies. The recruitment of nucleolin was evident around bacteria within the centre of the microcolonies that were not directly associated with actin-based pedestals. Incubation of host intestinal cells with different ligands that specifically bind nucleolin impaired the ability of EPEC to disrupt epithelial barrier function but did not inhibit bacterial attachment or other effector-driven processes such as pedestal formation or microvilli effacement. Taken together, this work suggests that EPEC exploits two spatially distinct pools of nucleolin during the infection process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167913PMC
http://dx.doi.org/10.1099/mic.0.047506-0DOI Listing

Publication Analysis

Top Keywords

epec
5
nucleolin
5
cell-surface nucleolin
4
nucleolin sequestered
4
sequestered epec
4
epec microcolonies
4
microcolonies play
4
play role
4
infection
4
role infection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!