Valproate (VPA) is a widely used anticonvulsant and mood-stabilizing drug. Recent studies have shown that VPA could reduce amyloid-β generation, and improve memory deficits in transgenic mouse models of Alzheimer's disease (AD). However, whether VPA affects tau phosphorylation and the underlying mechanism has not been established. Here, we showed that systemic treatment of APP and presenilin 1 double transgenic mice with VPA (50mg/kg, once a day for 12 weeks), significantly reduced the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. Meanwhile, VPA treatment markedly reduced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), two protein kinases involved in abnormal hyperphosphorylation of tau. In an okadaic acid-induced tau hyperphosphorylation SH-SY5Y cell model, the anti-tau-phosphorylation effect of VPA was further confirmed, accompanied by a marked decrease in the activities of CDK5 and GSK3β. Our present data suggest that the inhibitory effects of VPA on tau hyperphosphorylation might be mediated through both CDK5 and GSK3β signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2011.03.006DOI Listing

Publication Analysis

Top Keywords

tau phosphorylation
12
cyclin-dependent kinase
8
glycogen synthase
8
synthase kinase
8
signaling pathways
8
vpa tau
8
tau hyperphosphorylation
8
cdk5 gsk3β
8
vpa
7
tau
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!