AI Article Synopsis

  • This study examines how differences in slow wave activity (SWA) during non-REM sleep relate to brain structure, focusing on grey matter volume, white matter volume, and skull thickness.
  • Although no significant correlations were found between SWA and grey matter, skull thickness, or liquor, notable correlations emerged with parts of the corpus callosum and another white matter region.
  • The research also found that higher frequency EEG power positively correlates with grey matter volume and cortical surface area, suggesting that white matter may influence the synchronization of slow waves across the brain.

Article Abstract

Sleep studies often observe differences in slow wave activity (SWA) during non-rapid eye movement sleep between subjects. This study investigates to what extent these absolute differences in SWA can be explained with differences in grey matter volume, white matter volume or the thickness of skull and outer liquor rooms. To do this, we selected the 10-min interval showing maximal SWA of 20 young adult subjects and correlated these values lobe-wise with grey matter, skull and liquor thickness and globally with white matter as well as segments of the corpus callosum. Whereas grey matter, skull thickness and liquor did not correlate significantly with maximal slow wave activity, there were significant correlations with the anterior parts of the corpus callosum and with one other white matter region. In contrast, electroencephalogram power of higher frequencies correlates positively with grey matter volumes and cortical surface area. We discuss the possible role of white matter tracts on the synchronization of slow waves across the cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2869.2011.00916.xDOI Listing

Publication Analysis

Top Keywords

grey matter
16
white matter
16
slow wave
12
wave activity
12
matter
8
matter volume
8
matter skull
8
corpus callosum
8
anatomical markers
4
markers sleep
4

Similar Publications

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

Background: 24-h movement behaviors have a close relationship with children and adolescents' cognition, gray matter volume, and academic performance. This systematic review aims to precisely explore the associations between meeting different combinations of guidelines and the aforementioned indicators, in order to better serve public health policy.

Methods: Computer retrieval was conducted on CNKI, Web of Science, PubMed, SPORT Discus and Cochrane library databases.

View Article and Find Full Text PDF

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!